Application of generalized binary offset carrier modulation in BeiDou satellite navigation system

2014 ◽  
Vol 59 (11) ◽  
pp. 1206-1214 ◽  
Author(s):  
Wei Liu ◽  
Yuan Hu
2013 ◽  
Vol 390 ◽  
pp. 485-489
Author(s):  
Z. Huang ◽  
H. Yuan

Due to Chinas compass satellite navigation system which is under development, signals will be designed to obey some constraints and cooperate with other satellite system. Binary offset carrier BOC characterizing good correlation, band sharing and spectral separability is proposed for Compass system. Signal structure and development of Compass system is first analyzed in this paper, and then the principles of several BOC modulations are elaborated. The emphasis is put on a characteristic analysis of power spectral density and autocorrelation function. Further, the frequency spectrum of AltBOC modulation is simulated with Matlab due to B2 signal structure. The simulation results will be instructive meaning for compass phase Ш signal design and engineer implementation.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Li Yang ◽  
Yunhan Zhang ◽  
Haote Ruan

The BeiDou Satellite Navigation System of China can provide users with high precision, as well as all-weather and real-time positioning and navigation information. It can be widely used in many applications. However, new challenges appear with the expansion of the 5G communication system. To eradicate or weaken the influence of various errors in BeiDou positioning, a BeiDou satellite positioning algorithm based on GPRS technology is proposed. According to the principles of the BeiDou Satellite navigation system, the navigation and positioning data are obtained and useful information are extracted and sent to the communication network through the wireless module. The error is corrected by establishing a real-time kinematic (RTK) mathematical model, and the pseudorange is calculated by carrier phase to further eliminate the relativistic and multipath errors. Based on the results of error elimination, the BeiDou satellite positioning algorithm is improved and the positioning error is corrected. The experimental results show that the positioning accuracy and efficiency of the algorithm can meet the actual needs of real-time dynamic positioning systems.


Sign in / Sign up

Export Citation Format

Share Document