navigation system
Recently Published Documents





Prabha Ramasamy ◽  
Mohan Kabadi

Navigational service is one of the most essential dependency towards any transport system and at present, there are various revolutionary approaches that has contributed towards its improvement. This paper has reviewed the global positioning system (GPS) and computer vision based navigational system and found that there is a large gap between the actual demand of navigation and what currently exists. Therefore, the proposed study discusses about a novel framework of an autonomous navigation system that uses GPS as well as computer vision considering the case study of futuristic road traffic system. An analytical model is built up where the geo-referenced data from GPS is integrated with the signals captured from the visual sensors are considered to implement this concept. The simulated outcome of the study shows that proposed study offers enhanced accuracy as well as faster processing in contrast to existing approaches.

2022 ◽  
Vol 10 (1) ◽  
pp. 107
Aybars Oruc ◽  
Vasileios Gkioulos ◽  
Sokratis Katsikas

The e-navigation concept was introduced by the IMO to enhance berth-to-berth navigation towards enhancing environmental protection, and safety and security at sea by leveraging technological advancements. Even though a number of e-navigation testbeds including some recognized by the IALA exist, they pertain to parts only of the Integrated Navigation System (INS) concept. Moreover, existing e-navigation and bridge testbeds do not have a cybersecurity testing functionality, therefore they cannot be used for assessing the cybersecurity posture of the INS. With cybersecurity concerns on the rise in the maritime domain, it is important to provide such capability. In this paper we review existing bridge testbeds, IMO regulations, and international standards, to first define a reference architecture for the INS and then to develop design specifications for an INS Cyber-Physical Range, i.e., an INS testbed with cybersecurity testing functionality.

Jonatan Ginés Clavero ◽  
Francisco Martín Rico ◽  
Francisco J. Rodríguez-Lera ◽  
José Miguel Guerrero Hernandéz ◽  
Vicente Matellán Olivera

AbstractFacing human activity-aware navigation with a cognitive architecture raises several difficulties integrating the components and orchestrating behaviors and skills to perform social tasks. In a real-world scenario, the navigation system should not only consider individuals like obstacles. It is necessary to offer particular and dynamic people representation to enhance the HRI experience. The robot’s behaviors must be modified by humans, directly or indirectly. In this paper, we integrate our human representation framework in a cognitive architecture to allow that people who interact with the robot could modify its behavior, not only with the interaction but also with their culture or the social context. The human representation framework represents and distributes the proxemic zones’ information in a standard way, through a cost map. We have evaluated the influence of the decision-making system in human-aware navigation and how a local planner may be decisive in this navigation. The material developed during this research can be found in a public repository ( and instructions to facilitate the reproducibility of the results.

yongjian zhang ◽  
Lin Wang ◽  
Guo Wei ◽  
Xudong Yu ◽  
Chunfeng Gao ◽  

Abstract In the exploration of polar region, navigation is one of the most important issues to be resolved. To avoid the limitations of single navigation coordinate frame, the navigation systems usually use different navigation coordinate frames in polar and nonpolar region, such as the north-oriented geographic frame and the grid frame. However, the error states and covariance matrix are related with the definition of navigation coordinate frame, since the coordinate frame conversion will cause the integrated navigation Kalman filter overshoot and error discontinuity. To solve this problem, the transformation relationship of error states defined in different frames is deduced, whereby the covariance matrix transformation relationship is also analyzed. On this basis, covariance transformation-based the open-loop and the closed-loop Kalman filter integrated navigation algorithms are proposed. The effectiveness of algorithms is verified by flight tests with rotational strapdown inertial navigation system (RSINS)/global navigation satellite system (GNSS) integrated navigation system.

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 522
Henrik Frisk ◽  
Eliza Lindqvist ◽  
Oscar Persson ◽  
Juliane Weinzierl ◽  
Linda K. Bruetzel ◽  

Background: To investigate the accuracy of augmented reality (AR) navigation using the Magic Leap head mounted device (HMD), pedicle screws were minimally invasively placed in four spine phantoms. Methods: AR navigation provided by a combination of a conventional navigation system integrated with the Magic Leap head mounted device (AR-HMD) was used. Forty-eight screws were planned and inserted into Th11-L4 of the phantoms using the AR-HMD and navigated instruments. Postprocedural CT scans were used to grade the technical (deviation from the plan) and clinical (Gertzbein grade) accuracy of the screws. The time for each screw placement was recorded. Results: The mean deviation between navigation plan and screw position was 1.9 ± 0.7 mm (1.9 [0.3–4.1] mm) at the entry point and 1.4 ± 0.8 mm (1.2 [0.1–3.9] mm) at the screw tip. The angular deviation was 3.0 ± 1.4° (2.7 [0.4–6.2]°) and the mean time for screw placement was 130 ± 55 s (108 [58–437] s). The clinical accuracy was 94% according to the Gertzbein grading scale. Conclusion: The combination of an AR-HMD with a conventional navigation system for accurate minimally invasive screw placement is feasible and can exploit the benefits of AR in the perspective of the surgeon with the reliability of a conventional navigation system.

2022 ◽  
Vol 6 (1) ◽  
pp. 7-11
Xiaobin Huang ◽  
Yan Zhang

With the advancement of education informatization, learning through the internet has become a very important approach. Existing teaching websites generally have problems such as low accuracy of information grouping and obvious disconnection between the navigation system and content. Based on information architecture, a teaching website for early warning technical support specialty is designed in this paper from four aspects: content organization, identification, navigation, and interaction. The unification of information processing and information requirements is achieved using this method, which improves the quality of professional course construction for early warning technology support specialty.

Sign in / Sign up

Export Citation Format

Share Document