Signal Structure and Simulation of Compass Satellite Navigation System

2013 ◽  
Vol 390 ◽  
pp. 485-489
Author(s):  
Z. Huang ◽  
H. Yuan

Due to Chinas compass satellite navigation system which is under development, signals will be designed to obey some constraints and cooperate with other satellite system. Binary offset carrier BOC characterizing good correlation, band sharing and spectral separability is proposed for Compass system. Signal structure and development of Compass system is first analyzed in this paper, and then the principles of several BOC modulations are elaborated. The emphasis is put on a characteristic analysis of power spectral density and autocorrelation function. Further, the frequency spectrum of AltBOC modulation is simulated with Matlab due to B2 signal structure. The simulation results will be instructive meaning for compass phase Ш signal design and engineer implementation.

2014 ◽  
Vol 654 ◽  
pp. 181-186 ◽  
Author(s):  
Wei Lin Yuan ◽  
Yan Ma ◽  
Hua Bo Sun

The integrated positioning system increases the visible number of single satellite navigation system and improve the DOP value of single satellite navigation system. In accordance with the construction plan, BeiDou Navigation Satellite System (BDS) has started providing continuous passive positioning, navigation and timing service in the most parts of the Asia-Pacific In this paper, DOP value of GPS, BDS and the integrated navigation system are analyzed theoretically. The improvement of DOP value of GPS which resulted from present-running BDS navigation satellites is calculated by GPS/BDS observational data. The conclusions that GPS/BDS integrated navigation system will be able to improve the positioning accuracy and have useful references for the navigation and positioning application are also obtained.


Author(s):  
N. Al Bitar ◽  
A.I. Gavrilov

The paper presents a new method for improving the accuracy of an integrated navigation system in terms of coordinate and velocity when there is no signal received from the global navigation satellite system. We used artificial neural networks to simulate the error occurring in an integrated navigation system in the absence of the satellite navigation system signal. We propose a method for selecting the inputs for the artificial neural networks based on the mutual information (MI) criterion and lag-space estimation. The artificial neural network employed is a non-linear autoregressive neural network with external inputs. We estimated the efficiency of using our method to solve the problem of compensating for the error in an integrated navigation system in the absence of the satellite navigation system signal


2020 ◽  
Vol 25 (5) ◽  
pp. 465-474
Author(s):  
V.O. Zhilinskiy ◽  
◽  
D.S. Pecheritsa ◽  
L.G. Gagarina ◽  
◽  
...  

The Global Navigation Satellite System has a huge impact on both the public and private sectors, including the social-economic development, it has many applications and is an integral part of many domains. The application of the satellite navigation systems remains the most relevant in the field of transport, including land, air and maritime transport. The GLONASS system consists of three segments and the operation of the entire system depends on functioning of each component, but primarily, the accuracy of measurements depends on the basis forming of the control segment and management, responsible for forming ephemeris-time information. In the work, the influence of ephemeris-time information on the accuracy of solving the navigation problem by the signals of the GLONASS satellite navigation system has been analyzed. The influence of both ephemeris information and the frequency information, and of the time corrections has been individually studied. The accuracy of the ephemeris-time information is especially important when solving the navigation problem by highly precise positioning method. For the analysis the following scenarios of the navigation problem solving have been formed: using high-precision and broadcast ephemeris-time information, a combination of broadcast (high-precision) ephemeris-time information, and high-precision (broadcast) satellite clock offsets and two scenarios with simulation of the calculation of the relative correction to the radio signal carrier frequency. Based on the study results it has been concluded that the contribution of the frequency-time corrections to the error of location determination is of the greatest importance and a huge impact on the error location, while the errors of the ephemeris information are insignificant


Sign in / Sign up

Export Citation Format

Share Document