Error Analysis of Symplectic Multiple Time Stepping

1997 ◽  
Vol 34 (5) ◽  
pp. 1792-1807 ◽  
Author(s):  
Todd R. Littell ◽  
Robert D. Skeel ◽  
Meiqing Zhang
2021 ◽  
Author(s):  
Silvana Ilie ◽  
Monjur Morshed

Stochastic modeling of biochemical systems has been the subject of intense research in recent years due to the large number of important applications of these systems. A critical stochastic model of well-stirred biochemical systems in the regime of relatively large molecular numbers, far from the thermodynamic limit, is the chemical Langevin equation. This model is represented as a system of stochastic differential equations, with multiplicative and noncommutative noise. Often biochemical systems in applications evolve on multiple time-scales; examples include slow transcription and fast dimerization reactions. The existence of multiple time-scales leads to mathematical stiffness, which is a major challenge for the numerical simulation. Consequently, there is a demand for efficient and accurate numerical methods to approximate the solution of these models. In this paper, we design an adaptive time-stepping method, based on control theory, for the numerical solution of the chemical Langevin equation. The underlying approximation method is the Milstein scheme. The adaptive strategy is tested on several models of interest and is shown to have improved efficiency and accuracy compared with the existing variable and constant-step methods.


2015 ◽  
Vol 285 ◽  
pp. 133-148 ◽  
Author(s):  
Abdullah Demirel ◽  
Jens Niegemann ◽  
Kurt Busch ◽  
Marlis Hochbruck

2020 ◽  
Vol 23 (1-4) ◽  
Author(s):  
Matthias Bolten ◽  
Stephanie Friedhoff ◽  
Jens Hahne ◽  
Sebastian Schöps

AbstractWe apply the multigrid-reduction-in-time (MGRIT) algorithm to an eddy current simulation of a two-dimensional induction machine supplied by a pulse-width-modulation signal. To resolve the fast-switching excitations, small time steps are needed, such that parallelization in time becomes highly relevant for reducing the simulation time. The MGRIT algorithm is an iterative method that allows calculating multiple time steps simultaneously by using a time-grid hierarchy. It is particularly well suited for introducing time parallelism in the simulation of electrical machines using existing application codes, as MGRIT is a non-intrusive approach that essentially uses the same time integrator as a traditional time-stepping algorithm. However, the key difficulty when using time-stepping routines of existing application codes for the MGRIT algorithm is that the cost of the time integrator on coarse time grids must be less expensive than on the fine grid to allow for speedup over sequential time stepping on the fine grid. To overcome this difficulty, we consider reducing the costs of the coarse-level problems by adding spatial coarsening. We investigate effects of spatial coarsening on MGRIT convergence when applied to two numerical models of an induction machine, one with linear material laws and a full nonlinear model. Parallel results demonstrate significant speedup in the simulation time compared to sequential time stepping, even for moderate numbers of processors.


2021 ◽  
Author(s):  
Silvana Ilie ◽  
Monjur Morshed

Stochastic modeling of biochemical systems has been the subject of intense research in recent years due to the large number of important applications of these systems. A critical stochastic model of well-stirred biochemical systems in the regime of relatively large molecular numbers, far from the thermodynamic limit, is the chemical Langevin equation. This model is represented as a system of stochastic differential equations, with multiplicative and noncommutative noise. Often biochemical systems in applications evolve on multiple time-scales; examples include slow transcription and fast dimerization reactions. The existence of multiple time-scales leads to mathematical stiffness, which is a major challenge for the numerical simulation. Consequently, there is a demand for efficient and accurate numerical methods to approximate the solution of these models. In this paper, we design an adaptive time-stepping method, based on control theory, for the numerical solution of the chemical Langevin equation. The underlying approximation method is the Milstein scheme. The adaptive strategy is tested on several models of interest and is shown to have improved efficiency and accuracy compared with the existing variable and constant-step methods.


Sign in / Sign up

Export Citation Format

Share Document