mean square
Recently Published Documents





2022 ◽  
Vol 309 ◽  
pp. 118409
Yongming Han ◽  
Jingze Li ◽  
Xiaoyi Lou ◽  
Chenyu Fan ◽  
Zhiqiang Geng

2022 ◽  
Vol 16 (4) ◽  
pp. 1-22
Chang Liu ◽  
Jie Yan ◽  
Feiyue Guo ◽  
Min Guo

Although machine learning (ML) algorithms have been widely used in forecasting the trend of stock market indices, they failed to consider the following crucial aspects for market forecasting: (1) that investors’ emotions and attitudes toward future market trends have material impacts on market trend forecasting (2) the length of past market data should be dynamically adjusted according to the market status and (3) the transition of market statutes should be considered when forecasting market trends. In this study, we proposed an innovative ML method to forecast China's stock market trends by addressing the three issues above. Specifically, sentimental factors (see Appendix [1] for full trans) were first collected to measure investors’ emotions and attitudes. Then, a non-stationary Markov chain (NMC) model was used to capture dynamic transitions of market statutes. We choose the state-of-the-art (SOTA) method, namely, Bidirectional Encoder Representations from Transformers ( BERT ), to predict the state of the market at time t , and a long short-term memory ( LSTM ) model was used to estimate the varying length of past market data in market trend prediction, where the input of LSTM (the state of the market at time t ) was the output of BERT and probabilities for opening and closing of the gates in the LSTM model were based on outputs of the NMC model. Finally, the optimum parameters of the proposed algorithm were calculated using a reinforced learning-based deep Q-Network. Compared to existing forecasting methods, the proposed algorithm achieves better results with a forecasting accuracy of 61.77%, annualized return of 29.25%, and maximum losses of −8.29%. Furthermore, the proposed model achieved the lowest forecasting error: mean square error (0.095), root mean square error (0.0739), mean absolute error (0.104), and mean absolute percent error (15.1%). As a result, the proposed market forecasting model can help investors obtain more accurate market forecast information.

Hussein Abdulameer Abdulkadhim ◽  
Jinan Nsaif Shehab

Although variety in hiding methods used to protect data and information transmitted via channels but still need more robustness and difficulty to improve protection level of the secret messages from hacking or attacking. Moreover, hiding several medias in one media to reduce the transmission time and band of channel is the important task and define as a gain channel. This calls to find other ways to be more complexity in detecting the secret message. Therefore, this paper proposes cryptography/steganography method to hide an audio/voice message (secret message) in two different cover medias: audio and video. This method is use least significant bits (LSB) algorithm combined with 4D grid multi-wing hyper-chaotic (GMWH) system. Shuffling of an audio using key generated by GMWH system and then hiding message using LSB algorithm will provide more difficulty of extracting the original audio by hackers or attackers. According to analyses of obtained results in the receiver using peak signal-to-noise ratio (PSNR)/mean square error (MSE) and sensitivity of encryption key, the proposed method has more security level and robustness. Finally, this work will provide extra security to the mixture base of crypto-steganographic methods.

Sonti Swapna

Abstract: A combination of multiple-input multiple-output (MIMO) systems and orthogonal frequency division multiplexing (OFDM) technologies can be employed in modern wireless communication systems to achieve high data rates and improved spectrum efficiency. For multiple input multiple output (MIMO) systems, this paper provides a Rayleigh fading channel estimation technique based on pilot carriers. The channel is estimated using traditional Least Square (LS) and Minimum Mean Square (MMSE) estimation techniques. The MIMO-OFDM system's performance is measured using the Bit Error Rate (BER) and Mean Square Error (MSE) levels. Keywords: MIMO, MMSE, Channel estimation, BER, OFDM

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 647
Meijun Shang ◽  
Hejun Li ◽  
Ayaz Ahmad ◽  
Waqas Ahmad ◽  
Krzysztof Adam Ostrowski ◽  

Environment-friendly concrete is gaining popularity these days because it consumes less energy and causes less damage to the environment. Rapid increases in the population and demand for construction throughout the world lead to a significant deterioration or reduction in natural resources. Meanwhile, construction waste continues to grow at a high rate as older buildings are destroyed and demolished. As a result, the use of recycled materials may contribute to improving the quality of life and preventing environmental damage. Additionally, the application of recycled coarse aggregate (RCA) in concrete is essential for minimizing environmental issues. The compressive strength (CS) and splitting tensile strength (STS) of concrete containing RCA are predicted in this article using decision tree (DT) and AdaBoost machine learning (ML) techniques. A total of 344 data points with nine input variables (water, cement, fine aggregate, natural coarse aggregate, RCA, superplasticizers, water absorption of RCA and maximum size of RCA, density of RCA) were used to run the models. The data was validated using k-fold cross-validation and the coefficient correlation coefficient (R2), mean square error (MSE), mean absolute error (MAE), and root mean square error values (RMSE). However, the model’s performance was assessed using statistical checks. Additionally, sensitivity analysis was used to determine the impact of each variable on the forecasting of mechanical properties.

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262009
Rui Zhang ◽  
Hejia Song ◽  
Qiulan Chen ◽  
Yu Wang ◽  
Songwang Wang ◽  

Objectives This study intends to build and compare two kinds of forecasting models at different time scales for hemorrhagic fever incidence in China. Methods Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory Neural Network (LSTM) were adopted to fit monthly, weekly and daily incidence of hemorrhagic fever in China from 2013 to 2018. The two models, combined and uncombined with rolling forecasts, were used to predict the incidence in 2019 to examine their stability and applicability. Results ARIMA (2, 1, 1) (0, 1, 1)12, ARIMA (1, 1, 3) (1, 1, 1)52 and ARIMA (5, 0, 1) were selected as the best fitting ARIMA model for monthly, weekly and daily incidence series, respectively. The LSTM model with 64 neurons and Stochastic Gradient Descent (SGDM) for monthly incidence, 8 neurons and Adaptive Moment Estimation (Adam) for weekly incidence, and 64 neurons and Root Mean Square Prop (RMSprop) for daily incidence were selected as the best fitting LSTM models. The values of root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) of the models combined with rolling forecasts in 2019 were lower than those of the direct forecasting models for both ARIMA and LSTM. It was shown from the forecasting performance in 2019 that ARIMA was better than LSTM for monthly and weekly forecasting while the LSTM was better than ARIMA for daily forecasting in rolling forecasting models. Conclusions Both ARIMA and LSTM could be used to build a prediction model for the incidence of hemorrhagic fever. Different models might be more suitable for the incidence prediction at different time scales. The findings can provide a good reference for future selection of prediction models and establishments of early warning systems for hemorrhagic fever.

Sign in / Sign up

Export Citation Format

Share Document