scholarly journals Baby tyrannosaurid bones and teeth from the Late Cretaceous of western North America

2021 ◽  
pp. 1-22
Author(s):  
Gregory F. Funston ◽  
Mark J. Powers ◽  
S. Amber Whitebone ◽  
Stephen L. Brusatte ◽  
John B. Scannella ◽  
...  

Tyrannosaurids were the apex predators of Late Cretaceous Laurasia and their status as dominant carnivores has garnered considerable interest since their discovery, both in the popular and scientific realms. As a result, they are well studied and much is known of their anatomy, diversity, growth, and evolution. In contrast, little is known of the earliest stages of tyrannosaurid development. Tyrannosaurid eggs and embryos remain elusive, and juvenile specimens — although known — are rare. Perinatal tyrannosaurid bones and teeth from the Campanian–Maastrichtian of western North America provide the first window into this critical period of the life of a tyrannosaurid. An embryonic dentary (cf. Daspletosaurus) from the Two Medicine Formation of Montana, measuring just 3 cm long, already exhibits distinctive tyrannosaurine characters like a “chin” and a deep Meckelian groove, and reveals the earliest stages of tooth development. When considered together with a remarkably large embryonic ungual from the Horseshoe Canyon Formation of Alberta, minimum hatchling size of tyrannosaurids can be roughly estimated. A perinatal premaxillary tooth from the Horseshoe Canyon Formation likely pertains to Albertosaurus sarcophagus and it shows small denticles on the carinae. This tooth shows that the hallmark characters that distinguish tyrannosaurids from other theropods were present early in life and raises questions about the ontogenetic variability of serrations in premaxillary teeth. Sedimentary and taphonomic similarities in the sites that produced the embryonic bones provide clues to the nesting habits of tyrannosaurids and may help to refine the prospecting search image in the continued quest to discover baby tyrannosaurids.

2018 ◽  
Author(s):  
S. Augusta Maccracken ◽  
◽  
Ian M. Miller ◽  
Conrad C. Labandeira

2020 ◽  
Vol 191 (1) ◽  
pp. 180-200
Author(s):  
Chase Doran Brownstein

Abstract The timing of non-avian dinosaur decline is one of the most debated subjects in dinosaur palaeontology. Dinosaur faunas from the last few million years of the Mesozoic appear far less diverse than those from earlier in the Cretaceous, a trend that could suggest non-avian dinosaur extinction occurred gradually. However, the limited nature of the latest Cretaceous dinosaur record outside western North America has obscured patterns in dinosaur diversity just before the extinction. Here, I describe two associated skeletons and several isolated fossils recovered from the New Egypt Formation of New Jersey, a latest Maastrichtian unit that underlies the K–Pg boundary. The larger skeleton appears to be a small-bodied adult from a lineage outside Hadrosauridae, the dominant group of these animals during the Maastrichtian, that persisted along the eastern coast of North America. Smaller specimens are identifiable as juvenile hadrosauromorphs. These results substantiate an important assemblage of herbivorous dinosaurs from the poorly-known Cretaceous of eastern North America. The marine depositional setting for these skeletons demonstrates that proposed ecosystem preferences among hadrosauromorphs may be biased by post-mortem transportation, and the adult skeleton has implications for assessing the proposed relictual nature of Late Cretaceous eastern North American vertebrates.


Author(s):  
Andrew A. Farke ◽  
George E. Phillips

Ceratopsids (“horned dinosaurs”) are known from western North America and Asia, a distribution reflecting an inferred subaerial link between the two landmasses during the Late Cretaceous. However, this clade was previously unknown from eastern North America, presumably due to limited outcrop of the appropriate age and depositional environment as well as the separation of eastern and western North America by the Western Interior Seaway during much of the Late Cretaceous. A dentary tooth from the Owl Creek Formation (late Maastrichtian) of Union County, Mississippi, represents the first reported occurrence of Ceratopsidae from eastern North America. This tooth shows a combination of features typical of Ceratopsidae, including a double root and a prominent, blade-like carina. Based on the age of the fossil, we hypothesize that it is consistent with a dispersal of ceratopsids into eastern North America during the very latest Cretaceous, presumably after the two halves of North America were reunited following the retreat of the Western Interior Seaway.


2017 ◽  
Author(s):  
Andrew A. Farke ◽  
George E. Phillips

Ceratopsids (“horned dinosaurs”) are known from numerous specimens in western North America and Asia, a distribution reflecting the inferred subaerial link between the two landmasses during the Late Cretaceous. However, this clade was previously unknown from eastern North America, presumably due to limited outcrop of the appropriate age and depositional environment as well as the separation of eastern and western North America by the Western Interior Seaway during much of the Late Cretaceous. A dentary tooth from the Owl Creek Formation (late Maastrichtian) of Union County, Mississippi, represents the first reported occurrence of Ceratopsidae from eastern North America. This tooth shows a combination of features typical of Ceratopsidae, including a double root and a prominent, blade-like carina. Based on the age of the fossil, we hypothesize that it is consistent with a dispersal of ceratopsids into eastern North America during the very latest Cretaceous, after the two halves of North America were reunited following the retreat of the Western Interior Seaway.


Sign in / Sign up

Export Citation Format

Share Document