Canadian Journal of Earth Sciences
Latest Publications


TOTAL DOCUMENTS

8294
(FIVE YEARS 311)

H-INDEX

112
(FIVE YEARS 6)

Published By Canadian Science Publishing

1480-3313, 0008-4077

Author(s):  
William H Peck ◽  
Matthew P Quinan

The Morin terrane is an allochthonous crustal block in the southwestern Grenville Province with a relatively poorly-constrained metamorphic history. In this part of the Grenville Province, some terranes were part of the ductile middle crust during the 1.09–1.02 Ga collision of Laurentia with the Amazon craton (the Ottawan phase of the Grenvillian orogeny), while other terranes were part of the orogen’s superstructure. New U-Pb geochronology suggests that the Morin terrane experienced granulite-facies metamorphism during the accretionary Shawinigan orogeny (1.19–1.14 Ga) and again during the Ottawan. Seven zircon samples from the 1.15 Ga Morin anorthosite suite were dated to confirm earlier age determinations, and Ottawan metamorphic rims (1.08–1.07 Ga) were observed in two samples. U-Pb dating of titanite in nine marble samples surrounding the Morin anorthosite suite yielded mixed ages spanning between the Shawinigan and Ottawan metamorphisms (n=7), and predominantly Ottawan ages (n=2). Our results show that Ottawan zircon growth and resetting of titanite ages is spatially heterogeneous in the Morin terrane. Ages with a predominantly Ottawan signature are recognized in the Morin shear zone, which deforms the eastern lobe of the anorthosite, in an overprinted skarn zone on the western side of the massif, and in the Labelle shear zone that marks its western boundary. In the rest of the Morin terrane titanite with Shawinigan ages appear to have been only partially reset during the Ottawan. Further work is needed to better understand the relationship between the character of Ottawan metamorphism and resetting in different parts of the Morin terrane.


Author(s):  
Tania Martins ◽  
Nicole Rayner ◽  
David Corrigan ◽  
Paul Kremer

The collaborative federal-provincial Southern Indian Lake project in north-central Manitoba covered an area of more than 3500 km2 of the Trans-Hudson orogen. Regional-scale geological mapping, sampling, and lithogeochemical, isotopic and geochronological studies resulted in the identification of distinct assemblages of supracrustal rocks and varied episodes of plutonism. A granodiorite gneiss dated at ca. 2520 Ma is interpreted to represent the basement of the Southern Indian domain and is considered a separate crustal domain, named the Partridge Breast block. The Churchill River assemblage is composed of juvenile pillow basalt with intervening clastic sedimentary rocks, possibly a reflection of plume magmatism related to initial rifting of the Hearne craton margin. The Pukatawakan Bay assemblage consists mainly of massive to pillowed, juvenile metabasaltic rocks and associated basinal metasedimentary rocks. The Partridge Breast Lake assemblage is dominated by continental-arc volcanic and volcaniclastic rocks associated with basinal metasedimentary rocks. The Strawberry Island assemblage, consisting of arenite and polymictic conglomerate, is interpreted to have been deposited in a foreland-basin basin or intra-orogen pull-apart basin environment. The Whyme Bay assemblage is characterized by fluvial-alluvial orogenic sediments and is temporally linked to the Sickle Group rocks in the Lynn Lake greenstone belt. Granitoid rocks, dominantly monzogranite and granodiorite, range in age from ca. 1890 to 1830 Ma and occur throughout the Southern Indian domain, and intermediate and mafic intrusions of similar ages are also present. In this paper we integrate these new data into a tectonic framework for the Southern Indian domain of the Trans-Hudson orogen in Manitoba.


Author(s):  
John Arthur Westgate ◽  
Nancy D Naeser ◽  
Rene W. Barendregt ◽  
N. J.G. Pearce

Wellsch Valley tephra, near Swift Current, southwestern Saskatchewan, and Galt Island tephra, near Medicine Hat, southeastern Alberta, have been referenced in the literature since the 1970s, but little is available on their physical and chemical attributes – necessary information if they are to be recognized elsewhere. This study seeks to remedy this situation. Both have a calc-alkaline rhyolitic composition with hornblende, biotite, plagioclase, pyroxene, and Fe-Ti oxides being dominant. They have a similar composition but are not the same. Wellsch Valley tephra has a glass fission-track age of 0.75 ± 0.05 Ma, a reversed magnetic polarity, and was deposited at the close of the Matuyama Chron. Galt Island tephra has an age of 0.49 ± 0.05 Ma, a normal magnetic polarity, and was deposited during the early Brunhes Chron. Rich fossil vertebrate faunas occur in sediments close to them. Major- and trace-element concentrations in their glass shards indicate a source in the Cascade Range of the Pacific Northwest, USA, but differences in trace-element ratios suggest they are not consanguineous.


Author(s):  
Richard W. Saltus ◽  
Travis Hudson

In southern Alaska, Wrangellia-type magnetic crustal character extends from the Talkeetna Mountains southwest through the Alaska Range to the Bristol Bay region. Magnetic data analyses in the Talkeetna Mountains showed that there are mid-crustal differences in the magnetic properties of Wrangellia and the Peninsular terrane. After converting total field magnetic anomaly data to magnetic potential, we applied Fourier filtering techniques to remove magnetic responses from deep and shallow sources. The resulting mid-crustal magnetic characterization delineates the regional magnetic potential domains that correspond to the Wrangellia and Peninsular terranes throughout southern Alaska. These magnetic potential domains show that Wrangellia-type crust extends southwest to the Illiamna Lake region and that it overlaps the mapped Peninsular terrane. Upon reconsidering geologic ties between Wrangellia, Peninsular, and Alexander terranes we conclude that Peninsular terrane is part of what we here call Western Wrangellia. Western Wrangellia contains the Lower Jurassic Talkeetna volcanic arc and is similar to Wrangellia of the Vancouver Island area, Canada (Southern Wrangellia) which contains the Lower Jurassic Bonanza volcanic arc. Others have previously made this correlation and proposed that the Talkeetna arc-bearing part of southern Alaska was displaced from the Bonanza arc-bearing part of Canada. We generally agree and propose that about 1000 km of dextral displacement along ancestral Border Ranges fault segments and other faults of south-central Alaska separated Western Wrangellia from Southern Wrangellia. We think this displacement was mostly in the Late Jurassic and earliest Cretaceous, perhaps between about 160 and 130 Ma.


Author(s):  
Ilias Obda ◽  
Younes El Kharim ◽  
Ali Bounab ◽  
Abderrahim Lahrach ◽  
Mohammed Ahniche ◽  
...  

Since many decades, the town of Moulay Yacoub (MY) has undergone an intensification of its urbanization to meet the demands of rental housing for the visitors of the hydrothermal springs, which is considered as the only attraction of the town. Unfortunately, the majority of the buildings, both private and public, suffer from varying levels of damages where the lithological and geomorphic field features are to blame, without omitting the anthropogenic effects. In fact, the town is built on a marly hill conducive to slope movements, ranging from shallow solifluctions to large landslides, besides the swelling/shrinkage behaviour of these marls. The paper presents a multi-source approach to investigate the activity and the interactions of slow urbanized landslides and expansive soils within the urban perimeter of Moulay Yacoub. Indeed, the desiccation cracks of marly soils reveal their expansive behaviour, also attested by the swelling values. The other geotechnical parameters obtained from laboratory tests show that the shallow marls samples are severely weathered compared to those of the compacted deep ones. The Borehole data and seismic noise survey allows the detection of several impedance contrasts corresponding to the shallow weathered-deep marls interfaces which in some cases represent the rupture surfaces of gravitational processes. The very slow but perennial activities of the later are attested by the inclinometers, the PS-InSAR monitoring and building damages. The case study provides a good opportunity to highlight the complementarity of the multi-source tasks which stand as a further contribution to fostering this kind of integrated approaches at the slope scale.


2021 ◽  
pp. 1-13
Author(s):  
Yuxu Fan ◽  
Qinghui Xiao ◽  
Tingdong Li ◽  
Yang Cheng ◽  
Yan Li ◽  
...  

We report herein on new zircon U–Pb ages, the major and trace elements of whole-rock, and the Sr–Nd–Hf isotope composition for adakitic intrusives collected from the West Ujimqin district in the Southeast region of the Central Asian Orogenic Belt (CAOB). These data provide important constraints on the petrogenetic evolution and geodynamic setting of late Permian magmatism in the Southeast CAOB. The U–Pb dating of zircon shows that the ages of Seerbeng pluton and Nuhetingshala pluton in West Ujimqin are 255.3 ± 0.71 and 254.4 ± 1.2 Ma, respectively, which signifies that these are products of magmatic activity in the late Permian. The adakitic intrusives are characterized by high levels of Sr (Sr ≥ 741 ppm), low Y, low Yb, high Sr:Y ratios, and strongly fractionated rare earth elements (10.3 < LaN/YbN < 22.5), which is similar to the features of the adakite. The magmatic zircons exhibit positive Hf values (+8.1 to +13.3), and young two-stage model ages vary from 430 to 760 Ma. The high εNd(t) and low (87Sr:86Sr)i indicate that the adakitic granite derived from the partial melting of subducted oceanic slab. The high level of Mg# [100 × Mg/(Mg + Fe) in atomic number] and abundant Cr–Ni indicate that magmatic melts interacted with olivine rocks in the mantle. Considering these results and the regional rock assemblies, we conclude that the Paleo-Asian Ocean had not yet completely closed in the late Permian, and northward subduction continued, with the subducted slab possibly breaking off.


2021 ◽  
pp. 1-17
Author(s):  
Brette S. Harris ◽  
Maya T. LaGrange ◽  
Sara K. Biddle ◽  
Tiffany L. Playter ◽  
Kathryn M. Fiess ◽  
...  

The Hare Indian Formation (HIF) is a late Eifelian to Givetian organic-rich mudstone constituting the lower portion of the Horn River Group (HRG), which has been minimally scrutinized in the literature. This paper proposes depositional environments and a sequence stratigraphic framework for the HIF. Using composition data collected via energy-dispersive X-ray fluorescence, geochemical proxies inform detrital input, silica source, and paleoredox conditions. Cross-plots and chemostratigraphic profiles of detritally sourced Al, Ti, and K and redox-sensitive Mo and V inform depositional and stratigraphic constraints. Silica proportions vary, indicating that sediment was derived from detrital and biogenic sources. Al, Ti, and K distributions increase upwards, showing increased continentally sourced minerals. Redox-sensitive metals are highest in the Bluefish Member (BM), suggesting intermittent euxinia. Based on the presence of continental and pelagic sediments, the sedimentary environment is interpreted as proximal- to mid-shelf. These proxies guide systems tract interpretations. Si and redox-sensitive metal concentrations peak higher in the BM, accompanied by lowered concentrations of Al, Ti, and K, suggesting a maximum flooding surface. At the top of the Prohibition and Bell Creek members, redox-sensitive enrichments are lower with higher concentrations of Al, Ti, and K, suggesting a maximum regressive surface. Transgression occurred during the initial deposition of the BM, followed by regression for the remainder of the HIF. The sedimentology of the HIF can be difficult to decipher; the use of chemostratigraphy supports its geological history (including sedimentation trends and a local record of relative sea level) using methods that may be applied to other fine-grained successions.


Author(s):  
Simon J. Braddy ◽  
Jason A. Dunlop ◽  
Joseph A. Bonsor

The stylonurid eurypterid Leiopterella tetliei Lamsdell, Braddy, Loeffler, and Dineley, 2010 (Chelicerata: Eurypterida: Rhenopteridae) from the Early Devonian (Lochkovian) of Nunavut in Arctic Canada is redescribed. Restudy of the holotype under polarized light revealed a labrum, epistomal sutures, prosomal appendage III, and deltoid plates anterior to the genital appendage. An additional new specimen preserves the distal podomeres of appendage VI and gradually tapering opisthosomal tergites. The characters resolved here support the hypothesis that L. tetliei was relatively basal within the wider Stylonurina clade, with its tapering postabdomen supporting a more basal position within Rhenopteridae than previously suggested.


Author(s):  
Michael Lewis ◽  
Andy Breckenridge ◽  
James Teller

Abstract: Strandlines document the former presence of lakes and a sea in east-central North America along the southern margin of the retreating Laurentide Ice Sheet (LIS). The strandlines of these formerly level water bodies are uplifted to the north and provide evidence of glacial isostatic adjustment (GIA) of the Earth’s crust to the former ice load. We compile published ages and measurements of the present elevation and location of shore features in the strandlines of 8 major paleo-waterbodies from the St. Lawrence Valley to the northern Great Plains in digital format as an aid for the numerical modelling of GIA. Data for eastern water bodies were extracted and digitized from publications during the past 120 years. Digital position co-ordinates were scaled from published maps of survey sites or were determined using Google Earth Pro software. Published data for paleo-lakes Duluth and Agassiz were mainly obtained from field measurements and digital elevation models (DEMs). Two-sigma or 95% probability values are provided for the strandline ages and for isobase (contour) positions representing the deformed water surfaces. Peak strandline gradients reported here were largest at about ca. 13,000 years ago. Lower strandline gradients for older shores may reveal areas closer to the peripheral bulge and areas of thinner ice (lighter crustal loads). Concave upward strandline profiles characterize most paleo-basins whereas a linear uplift profile characterizes the Champlain Sea strandline. Directions of strandline maximum uplift within the former water body basins point towards the thickest part of the LIS near the Québec-Labrador ice dome.


Sign in / Sign up

Export Citation Format

Share Document