Decoherence effects on quantum Fisher information for moving two four-level atoms in the presence of Stark effect and Kerr-like medium

2021 ◽  
Vol 75 (8) ◽  
Author(s):  
S. Jamal Anwar ◽  
M. Usman ◽  
M. Ramzan ◽  
M. Khalid Khan
Physics ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 131-146
Author(s):  
Syed Jamal Anwar ◽  
M. Usman ◽  
M. Ramzan ◽  
M. Khalid Khan

We have investigated numerically the dynamics of quantum Fisher information (QFI) and quantum entanglement (QE) of a two moving two-level atomic systems interacting with a coherent and thermal field in the presence of intrinsic decoherence (ID) and Kerr (non-linear medium) and Stark effects. The state of the entire system interacting with coherent and thermal fields is evaluated numerically under the influence of ID and Kerr (nonlinear) and Stark effects. QFI and von Neumann entropy (VNE) decrease in the presence of ID when the atomic motion is neglected. QFI and QE show an opposite response during its time evolution in the presence of a thermal environment. QFI is found to be more susceptible to ID as compared to QE in the presence of a thermal environment. The decay of QE is further damped at greater time-scales, which confirms the fact that ID heavily influences the system’s dynamics in a thermal environment. However, a periodic behavior of entanglement is observed due to atomic motion, which becomes modest under environmental effects. It is found that a non-linear Kerr medium has a prominent effect on the VNE but not on the QFI. Furthermore, it has been observed that QFI and QE decay soon under the influence of the Stark effect in the absence of atomic motion. The periodic response of QFI and VNE is observed for both the non-linear Kerr medium and the Stark effect in the presence of atomic motion. It is observed that the Stark, Kerr, ID, and thermal environment have significant effects during the time evolution of the quantum system.


2020 ◽  
Vol 41 (3) ◽  
pp. 310-320
Author(s):  
S. Jamal Anwar ◽  
M. Usman ◽  
M. Ramzan ◽  
M. Khalid Khan

2021 ◽  
Vol 103 (12) ◽  
Author(s):  
Xiaobao Liu ◽  
Jiliang Jing ◽  
Zehua Tian ◽  
Weiping Yao

Sign in / Sign up

Export Citation Format

Share Document