scholarly journals Quantum Fisher Information of Two-Level Atomic System under the Influence of Thermal Field, Intrinsic Decoherence, Stark Effect and Kerr-Like Medium

2021 ◽  
Vol 11 (01) ◽  
pp. 24-41
Author(s):  
S. Jamal Anwar ◽  
M. Ramzan ◽  
M. Usman ◽  
M. Khalid Khan
Physics ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 131-146
Author(s):  
Syed Jamal Anwar ◽  
M. Usman ◽  
M. Ramzan ◽  
M. Khalid Khan

We have investigated numerically the dynamics of quantum Fisher information (QFI) and quantum entanglement (QE) of a two moving two-level atomic systems interacting with a coherent and thermal field in the presence of intrinsic decoherence (ID) and Kerr (non-linear medium) and Stark effects. The state of the entire system interacting with coherent and thermal fields is evaluated numerically under the influence of ID and Kerr (nonlinear) and Stark effects. QFI and von Neumann entropy (VNE) decrease in the presence of ID when the atomic motion is neglected. QFI and QE show an opposite response during its time evolution in the presence of a thermal environment. QFI is found to be more susceptible to ID as compared to QE in the presence of a thermal environment. The decay of QE is further damped at greater time-scales, which confirms the fact that ID heavily influences the system’s dynamics in a thermal environment. However, a periodic behavior of entanglement is observed due to atomic motion, which becomes modest under environmental effects. It is found that a non-linear Kerr medium has a prominent effect on the VNE but not on the QFI. Furthermore, it has been observed that QFI and QE decay soon under the influence of the Stark effect in the absence of atomic motion. The periodic response of QFI and VNE is observed for both the non-linear Kerr medium and the Stark effect in the presence of atomic motion. It is observed that the Stark, Kerr, ID, and thermal environment have significant effects during the time evolution of the quantum system.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 311
Author(s):  
A.-B. A. Mohamed ◽  
E. M. Khalil ◽  
M. F. Yassen ◽  
H. Eleuch

In this paper, we study a Hamiltonian system constituted by two coupled two-level atoms (qubits) interacting with a nonlinear generalized cavity field. The nonclassical two-qubit correlation dynamics are investigated using Bures distance entanglement and local quantum Fisher information under the influences of intrinsic decoherence and qubit–qubit interaction. The effects of the superposition of two identical generalized coherent states and the initial coherent field intensity on the generated two-qubit correlations are investigated. Entanglement of sudden death and sudden birth of the Bures distance entanglement as well as the sudden changes in local Fisher information are observed. We show that the robustness, against decoherence, of the generated two-qubit correlations can be controlled by qubit–qubit coupling and the initial coherent cavity states.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 352
Author(s):  
Abdel-Baset A. Mohamed ◽  
Eied. M. Khalil ◽  
Mahmoud M. Selim ◽  
Hichem Eleuch

The dynamics of two charged qubits containing Josephson Junctions inside a cavity are investigated under the intrinsic decoherence effect. New types of quantum correlations via local quantum Fisher information and Bures distance norm are explored. We show that we can control the quantum correlations robustness by the intrinsic decoherence rate, the qubit-qubit coupling as well as by the initial coherent states superposition. The phenomenon of sudden changes and the freezing behavior for the local quantum Fisher information are sensitive to the initial coherent state superposition and the intrinsic decoherence.


2020 ◽  
Vol 41 (3) ◽  
pp. 310-320
Author(s):  
S. Jamal Anwar ◽  
M. Usman ◽  
M. Ramzan ◽  
M. Khalid Khan

Sign in / Sign up

Export Citation Format

Share Document