Communications in Theoretical Physics
Latest Publications


TOTAL DOCUMENTS

9443
(FIVE YEARS 618)

H-INDEX

46
(FIVE YEARS 11)

Published By Iop Publishing

0253-6102

Author(s):  
jifei zhao ◽  
youyang Xu

Abstract Quantum effect plays important roles in quantum thermodynamics, and recently the application of indefinite causal order to quantum thermodynamics has attracted much attentions. Based on two trapped ions, we propose a scheme to add an indefinite causal order to the isochoric cooling stroke of Otto engine through reservoir engineering. Then, we observe that the quasi-static efficiency of this heat engine is far beyond the efficiency of a normal Otto heat engine and may reach 1. When the power is its maximum, the efficiency is also much higher than that of a normal Otto heat engine. This enhancement may origin from the non-equilibrium of reservoir and the measurement on control qubit.


Author(s):  
Chun-Yan Zhao ◽  
Yan-Rong Fu ◽  
Jin-Hua Zhao

Abstract Message passing algorithms, whose iterative nature captures well complicated interactions among interconnected variables in complex systems and extracts information from the fixed point of iterated messages, provide a powerful toolkit in tackling hard computational tasks in optimization, inference, and learning problems. In the context of constraint satisfaction problems (CSPs), when a control parameter (such as constraint density) is tuned, multiple threshold phenomena emerge, signaling fundamental structural transitions in their solution space. Finding solutions around these transition points is exceedingly challenging for algorithm design, where message passing algorithms suffer from a large message fluctuation far from convergence. Here we introduce a residual-based updating step into message passing algorithms, in which messages varying large between consecutive steps are given a high priority in updating process. For the specific example of model RB, a typical prototype of random CSPs with growing domains, we show that our algorithm improves the convergence of message updating and increases the success probability in finding solutions around the satisfiability threshold with a low computational cost. Our approach to message passing algorithms should be of value for exploring their power in developing algorithms to find ground-state solutions and understand the detailed structure of solution space of hard optimization problems.


Author(s):  
Abdul Kabir ◽  
Jameel-Un Nabi

Abstract Radiative capture p+9Be → 10B+γ at energies bearing astrophysical importance is a key process for the spectroscopic study of 10B. In this work, we consider the radiative capture cross-section for the 9Be(p, γ)10B within the framework of the potential model and the R-matrix method for the multi-entrance channel cases. In certain cases, when the potential fails, therefore, the R-matrix approach is better to use for the description of partial components of the cross-section that have sharp or broad resonances. For all possible electric and magnetic dipole transitions, partial components of the astrophysical S-factor are computed. The computed value of the total S-factor at zero energy is consistent with the reported results.


Author(s):  
Ya Yang ◽  
Jing Lu ◽  
Lan Zhou

Abstract Quantum router is one of the essential elements in the quantum network. Conventional routers only direct a single photon from one quantum channel into another. Here, we proposed a few-photon router. The active element of the router is a single qubit chirally coupled to two independent waveguides simultaneously, where each waveguide mode provides a quantum channel. By introducing the operators of the scatter-free space and the controllable space, the output state of the one-photon and two-photon scattering are derived analytically. It is found that the qubit can direct one and two photons from one port of the incident waveguide to an arbitrarily selected port of the other waveguide with unity, respectively. However, two photons cannot be simultaneously routed to the same port due to the anti-bunch effect.


Author(s):  
Ming Shen ◽  
Ye Chen ◽  
Lijuan Ge ◽  
Xinglin Wang

Abstract Propagation dynamics of two-dimensional Airy Gaussian beam and Airy Gaussian vortex beam are investigated numerically in local and nonlocal nonlinear media. The self-healing and collapse of the beam depend crucially on the distribution factor $b$ and the topological charge $m$. With the help of nonlocality, stable Airy Gaussian beam and Airy Gaussian vortex beam with larger amplitude can be obtained, which always collapse in local nonlinear media. When the distribution factor $b$ is large enough, the Airy Gaussian vortex beam will transfer into quasi-vortex solitons in nonlocal nonlinear media.


Author(s):  
Kai Yu ◽  
Chun Hui Zhang ◽  
Xing Yu Zhou ◽  
Qin Wang

Abstract In quantum key distribution (QKD), passive decoy-state method can simplify the intensity modulation and reduce some of side-channel information leakage and modulation errors. It is usually implemented with a heralded single-photon source. In [Physical Review A 96, 032312 (2016)], a novel passive decoy-state method is proposed by Wang et al., which uses two local detectors to generate more detection events for tightly estimating channel parameters. However, in original scheme, the two local detectors are assumed to be identical, including same detection efficiency and dark count rate, which is often not satisfied in realistic experiment. Therefore, in this paper, we construct a model for this passive decoy-state QKD scheme with two mismatched detectors and explore the effect on QKD performance with certain parameter. We also take the finite-size effect into consideration, showing the performance with statistical fluctuations. The results show that the efficiencies of local detectors affect the key rate more obviously than dark count rates. Our work provides a reference value for realistic QKD system.


Author(s):  
Yue Chen ◽  
Wei Chen ◽  
Xiaosong Chen

Abstract In this article, we apply classical density functional theory to investigate the characteristics of depletion interaction in Lennard-Jones (LJ) binary fluid mixtures. First of all, in order to confirm the validity of our adopted density functional formalism, we calculate the radial distribution functions with theoretical approach and compare them with results obtained by molecular dynamics simu- lation. Then this approach is applied to the case of two colloids immersed in LJ solvent systems. We investigate the variation of depletion interaction with respect to the distance of two colloids in LJ binary systems. We find that depletion interaction may be attractive or repulsive, mostly depending on the bulk density of solvent and the temperature of binary system. For high bulk densities, the repulsive barrier of depletion force is remarkable when the total excluded volume of colloids touches each other and reaches a maximum. The height of repulsive barrier is related to the parameters of LJ potential and bulk density. Moreover, depletion force may exhibit attractive wells if the bulk density of solvent is low. The attractive well tends to appear when the surface-surface distance of colloids is half of the size of polymer and deepen with temperature lowering in a fixed bulk density. In contrast with the hard-spheres system, no oscillation of depletion potential around zero is observed.


Author(s):  
Xiang Yan ◽  
Peng Fei Zhang ◽  
Cheng Yu Fan ◽  
Jing Hui Zhang

Abstract The entangled orbital angular momentum (OAM) photons propagating across a weakly turbulent atmosphere are investigated. Here, the paper uses the single-phase screen model based on the Kolmogorov theory of turbulence, especially focuses on the influence of the backward scattering on OAM evolution. The results indicate that the backward scattering plays an important role in the analysis of OAM entanglement evolution in the turbulent atmosphere. It can not be negligible especially for higher-order OAM mode. Moreover, when OAM mode is greater than 4, entangled photon pairs composed of higher OAM modes are not more robust in turbulence within the weak scintillation regime. These results will be useful in future investigations of OAM-based optical wave propagation through turbulent atmosphere.


Author(s):  
Xinfang Li ◽  
Jianning Liu ◽  
Osei Seth ◽  
Heng-Na Xiong ◽  
Qingshou Tan ◽  
...  

Abstract We propose a simple scheme to realize the persistent spin-nematic squeezing in a spinor Bose-Einstein condensate by rapidly turning-off the external magnetic field at a time that maximal spin-nematic squeezing occurs. We observe that the optimal spinnematic squeezing can be maintained in a nearly fixed direction. For a proper initial magnetic field, the optimal squeezing can be obviously enhanced. We further construct a spin-mixing interferometer, where the quantum correlation of the squeezed state (generated by our scheme) is fully utilized in the phase measurement, and show the phase sensitivity of the interferometer has a significant enhancement.


Author(s):  
Hua-Xing Chen

Abstract We systematically construct all the tetraquark currents of J(PC)=1(++) with the quark configurations [c q][cbar qbar], [cbar q][qbar c], and [cbar c][qbar q] (q=u/d). Their relations are derived using the Fierz rearrangement of the Dirac and color indices, through which we study decay properties of the X(3872) under both the compact tetraquark and hadronic molecule interpretations. We propose to search for the X(3872) -> χc0-π, ηc-π-π, and χc1-π-π decay processes in particle experiments.


Sign in / Sign up

Export Citation Format

Share Document