scholarly journals Estimation of nuclear matrix elements of double-$$\varvec{\beta }$$ decay from shell model and quasiparticle random-phase approximation

2021 ◽  
Vol 136 (9) ◽  
Author(s):  
J. Terasaki ◽  
Y. Iwata

AbstractThe nuclear matrix element (NME) of neutrinoless double-$$\beta $$ β ($$0\nu \beta \beta $$ 0 ν β β ) decay is an essential input for determining the neutrino effective mass, if the half-life of this decay is measured. Reliable calculation of this NME has been a long-standing problem because of the diversity of the predicted values of the NME, which depends on the calculation method. In this study, we focus on the shell model and the QRPA. The shell model has a rich amount of the many-particle many-hole correlations, and the quasiparticle random-phase approximation (QRPA) can obtain the convergence of the calculation results with respect to the extension of the single-particle space. It is difficult for the shell model to obtain the convergence of the $$0\nu \beta \beta $$ 0 ν β β NME with respect to the valence single-particle space. The many-body correlations of the QRPA may be insufficient, depending on the nuclei. We propose a new method to phenomenologically modify the results of the shell model and the QRPA compensating for the insufficiencies of each method using the information of other methods in a complementary manner. Extrapolations of the components of the $$0\nu \beta \beta $$ 0 ν β β NME of the shell model are made toward a very large valence single-particle space. We introduce a modification factor to the components of the $$0\nu \beta \beta $$ 0 ν β β NME of the QRPA. Our modification method yields similar values of the $$0\nu \beta \beta $$ 0 ν β β NME for the two methods with respect to $$^{48}$$ 48 Ca. The NME of the two-neutrino double-$$\beta $$ β decay is also modified in a similar but simpler manner, and the consistency of the two methods is improved.

Author(s):  
Jenni Kotila

The fundamental nature of the neutrino is presently a subject of great interest. A way to access the absolute mass scale and the fundamental nature of the neutrino is to utilize the atomic nuclei through their rare decays, the neutrinoless double beta (0νββ) decay in particular. The experimentally measurable observable is the half-life of the decay, which can be factorized to consist of phase space factor, axial vector coupling constant, nuclear matrix element, and function containing physics beyond the standard model. Thus reliable description of nuclear matrix element is of crucial importance in order to extract information governed by the function containing physics beyond the standard model, neutrino mass parameter in particular. Comparison of double beta decay nuclear matrix elements obtained using microscopic interacting boson model (IBM-2) and quasiparticle random phase approximation (QRPA) has revealed close correspondence, even though the assumptions in these two models are rather different. The origin of this compatibility is not yet clear, and thorough investigation of decomposed matrix elements in terms of different contributions arising from induced currents and the finite nucleon size is expected to contribute to more accurate values for the double beta decay nuclear matrix elements. Such comparison is performed using detailed calculations on both models and obtained results are then discussed together with recent experimental results.


2010 ◽  
Vol 81 (2) ◽  
Author(s):  
Myung-Ki Cheoun ◽  
Eunja Ha ◽  
Su Youn Lee ◽  
K. S. Kim ◽  
W. Y. So ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document