calculation results
Recently Published Documents


TOTAL DOCUMENTS

4054
(FIVE YEARS 1727)

H-INDEX

26
(FIVE YEARS 8)

Algorithms ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 23
Author(s):  
Yang Zhang ◽  
Jiacheng Li ◽  
Lei Li

To overcome the shortcomings of the harmony search algorithm, such as its slow convergence rate and poor global search ability, a reward population-based differential genetic harmony search algorithm is proposed. In this algorithm, a population is divided into four ordinary sub-populations and one reward sub-population, for each of which the evolution strategy of the differential genetic harmony search is used. After the evolution, the population with the optimal average fitness is combined with the reward population to produce a new reward population. During an experiment, tests were conducted first on determining the value of the harmony memory size (HMS) and the harmony memory consideration rate (HMCR), followed by an analysis of the effect of their values on the performance of the proposed algorithm. Then, six benchmark functions were selected for the experiment, and a comparison was made on the calculation results of the standard harmony memory search algorithm, reward population harmony search algorithm, differential genetic harmony algorithm, and reward population-based differential genetic harmony search algorithm. The result suggests that the reward population-based differential genetic harmony search algorithm has the merits of a strong global search ability, high solving accuracy, and satisfactory stability.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 600
Author(s):  
Lili Zhang ◽  
Yan Song ◽  
Linjie Yang ◽  
Jiuzhou Zhao ◽  
Jie He ◽  
...  

Synergistic effect of TiB2 (in form of Al-5Ti-1B) and La on grain refining results in Al-2Cu alloy was investigated. α-Al grains are significantly refined by Al-5Ti-1B. When trace La is added to the melt, further refinement is exhibited. Average grain size and nucleation undercooling of α-Al reduce first and then almost remain unchanged with La addition. Satisfactory grain refining result achieves when La addition level reaches 600 ppm. When more than 600 ppm La is added to the melt, La-rich particles form and the effect of solute La left in matrix on the microstructure almost no longer changes. Theoretical calculation results demonstrate that solute La segregates to Al melt/TiB2 particles interface along with Ti and Cu prior to α-Al nucleation and the synergistic effect of La and TiB2 particles on grain refinement mainly attributes to the enhancement in the potency of TiB2 particles to heterogeneously nucleate α-Al by trace La addition.


2022 ◽  
Vol 14 (2) ◽  
pp. 861
Author(s):  
Han-Cheng Dan ◽  
Hao-Fan Zeng ◽  
Zhi-Heng Zhu ◽  
Ge-Wen Bai ◽  
Wei Cao

Image recognition based on deep learning generally demands a huge sample size for training, for which the image labeling becomes inevitably laborious and time-consuming. In the case of evaluating the pavement quality condition, many pavement distress patching images would need manual screening and labeling, meanwhile the subjectivity of the labeling personnel would greatly affect the accuracy of image labeling. In this study, in order for an accurate and efficient recognition of the pavement patching images, an interactive labeling method is proposed based on the U-Net convolutional neural network, using active learning combined with reverse and correction labeling. According to the calculation results in this paper, the sample size required by the interactive labeling is about half of the traditional labeling method for the same recognition precision. Meanwhile, the accuracy of interactive labeling method based on the mean intersection over union (mean_IOU) index is 6% higher than that of the traditional method using the same sample size and training epochs. In addition, the accuracy analysis of the noise and boundary of the prediction results shows that this method eliminates 92% of the noise in the predictions (the proportion of noise is reduced from 13.85% to 1.06%), and the image definition is improved by 14.1% in terms of the boundary gray area ratio. The interactive labeling is considered as a significantly valuable approach, as it reduces the sample size in each epoch of active learning, greatly alleviates the demand for manpower, and improves learning efficiency and accuracy.


Cobot ◽  
2022 ◽  
Vol 1 ◽  
pp. 1
Author(s):  
Pengbo Li ◽  
Can Wang ◽  
Bailin He ◽  
Jiaqing Liu ◽  
Xinyu Wu

Background: As the world's aging population increases, the number of hemiplegic patients is increasing year by year. At present, in many countries with low medical level, there are not enough rehabilitation specialists. Due to the different condition of patients, the current rehabilitation training system cannot be applied to all patients. so that patients with hemiplegia cannot get effective rehabilitation training. Methods: Through a motion capture experiment, the mechanical design of the hip joint, knee joint and ankle joint was rationally optimized based on the movement data. Through the kinematic analysis of each joint of the hemiplegic exoskeleton robot, the kinematic relationship of each joint mechanism was obtained, and the kinematics analysis of the exoskeleton robot was performed using the Denavit-Hartenberg (D-H) method. The kinematics simulation of the robot was carried out in automatic dynamic analysis of mechanical systems (ADAMS), and the theoretical calculation results were compared with the simulation results to verify the correctness of the kinematics relationship. According to the exoskeleton kinematics model, a mirror teaching method of gait planning was proposed, allowing the affected leg to imitate the movement of the healthy leg with the help of an exoskeleton robot. Conclusions: A new hemiplegic exoskeleton robot designed by Shenzhen Institute of Advanced Technology (SIAT-H) is proposed, which is lightweight, modular and anthropomorphic. The kinematics of the robot have been analyzed, and a mirror training gait is proposed to enable the patient to form a natural walking posture. Finally, the wearable walking experiment further proves the feasibility of the structure and gait planning of the hemiplegic exoskeleton robot.


2022 ◽  
Author(s):  
Ahmed Samir Allam ◽  
Kadry Mohamed El Saeed ◽  
Hazem Mahmoud Abozeid ◽  
Khaled Mohamed Raafat

Abstract Background Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disease that can change a patient's quality of life and impair their daily activities. Non-alcoholic fatty liver disease (NAFLD), on the other hand, has become a widespread condition as the global obesity rates rises. The prevalence of NAFLD has reached up to 25% of the adolescent population. The etiology of both diseases is still not clearly understood. The mechanism linking the two seemingly similar diseases could be immune system activation and tissue inflammation; thus, the goal of our study was to see if there was a common link between them and to examine NAFLD prevalence and severity in IBS patients. Our study included 150 patients who have symptoms of IBS with different degrees of severity. IBS was diagnosed according to modified ROME IV criteria. Patients were examined to see if they had NAFLD based on abdominal ultrasonography and NAFLD fibrosis score calculation. Results Our current study showed that regarding evaluating the association of IBS with NAFLD, there was a highly statistically significant association between both diseases. Furthermore, there was a high statistical significant association between higher grades of NAFLD and lipid profile parameters. Conclusion Patients with IBS had a higher frequency of NAFLD. In addition, a significant association was noted between IBS severity and increased NAFLD grades.


2022 ◽  
Vol 1049 ◽  
pp. 248-254
Author(s):  
Ivan Andrianov

The numerical method of stamp topological optimization taking into account fatigue strength is presented in the work. It is proposed to take into account the restrictions on the stress state in accordance with the curve of the dependence of the maximum stresses on the number of loading cycles in the ESO topological optimization method. An approach to the selection of the evolutionary coefficient with a step-by-step increase in the rejection coefficient is proposed when constructing an iterative scheme for the rejection of elements by the method of topological optimization. The calculation of the stamp optimal topology with a decrease in volume due to the removal and redistribution of material was carried out in the study. The new geometric model of the optimal topology stamp is based on the predicted distribution of elements with a minimum stress level. The verification calculation of the stress state of the stamp of optimal topology with an assessment of fatigue strength was carried out in the work. The numerical calculation was carried out using the finite element method in the Ansys software package. The minimized stamp volume decreased by 35% according to the calculation results. The results of the study can be further applied in the development of topological optimization methods and in the design of stamping tools of optimal topology.


2022 ◽  
Vol 11 ◽  
Author(s):  
Meilin Mu ◽  
Hongwei Gao

The geometric structure of azido Pt(IV) compounds containing picoline was calculated by using density functional theory(DFT) at the LSDA/SDD level. The ESP distribution shows the possible reaction sites of the compounds. In addition, the frequency calculation results assigned the infrared spectra of these compounds, and specified important stretching and bending vibrations. The HOMO-LUMO energy gaps of these compounds are also calculated to explain the charge transfer of the molecules. The distribution of Mulliken charges and natural atomic charges of these atoms is also calculated. Natural bond orbital(NBO) analysis explains the intramolecular interactions and their electron density.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 458
Author(s):  
Jiming Lin ◽  
Ming Bao ◽  
Feng Zhang ◽  
Yong Zhang ◽  
Jianhong Yang

This paper focuses on a detailed numerical investigation combined with experimental research for a non-premixed swirl combustor, which aims to analyze the effects of the blade angle of the outer swirler and equivalence ratio on flow and combustion characteristics. In the experiment, the temperature in the furnace was obtained with a thermocouple, while a realizable k-ε turbulence model and two-step reaction mechanism of methane and air are used in the numerical method. The calculation results are in good agreement with the experimental data. The results reveal that the air flow rate through the swirler accounts for a small amount of the total air due to the influence of the draft fan, and there is no central recirculation zone (CRZ) despite the presence of the swirler. It was also found that NO emissions gradually decrease as the blade angle of the outer swirler increases. It was also indicated that the average temperature is 100 K higher than the general combustor with a 58° blade angle in the furnace by increasing the equivalent ratio of the tertiary air area, and the NO emissions reduced by approximately 25%. This study can provide guidance for the operation and structural design of non-premixed swirl combustors.


2022 ◽  
pp. 9-17
Author(s):  
IRYNA SHVEDCHYKOVA ◽  
JULIA ROMANCHENKO ◽  
INNA MELKONOVA

Purpose. The choice of the geometric dimensions ratios of system of matrix poles of electromagnetic polygradient separator to increase productivity with maintaining the reliability of extracting of ferromagnetic impurities from bulk material.Methodology. To solve the dynamic problem of motion of a ferromagnetic body in the working gap of pole system of matrix of polygradient separator under the influence of an external magnetic field the known methods of solving linear inhomogeneous differential equations are used. To confirm the reliability of obtained results the method of experimental research is used.Findings. The formulation of dynamic problem of movement of ferromagnetic body in the working gap of plate pole system of matrix of polygradient separator is carried out. Parametric equation for the trajectory of ferromagnetic body removal and a calculated relation connecting the main geometric dimensions of the system of matrix poles are obtained. The calculation results are confirmed experimentally and by operating practice of known magnetic separating devices.Originality. The mathematical description of working process of a polygradient electromagnetic separator with a plate matrix was further developed, which made it possible to obtain an analytical expression that takes into account the main geometric dimensions of the working space of matrix of separator.Practical value. Accounting of obtained analytical dependences between the length of separation zone and air gap, which characterizes the thickness of the separated material layer through which the ferromagnetic body must pass during the separation process, will ensure the necessary purity and productivity of separation.


2022 ◽  
pp. 1-33
Author(s):  
Yan Xu ◽  
Yang Caijin ◽  
Weihua Zhang ◽  
Weidong Zhu ◽  
Wei Fan

Abstract A new moving Kirchhoff-Love plate element is developed in this work to accurately and efficiently calculate the dynamic response of vehicle-pavement interaction. Since the vehicle can only affect a small region nearby, the wide pavement is reduced to a small reduced plate area around the vehicle. The vehicle loads moving along an arbitrary trajectory is considered, and the arbitrary Lagrangian-Eulerian method is used here for coordinate conversion. The reduced plate area is spatially discretized using the current moving plate element, where its governing equations are derived using Lagrange's equations. The moving plate element is validated by different plate subjected to moving load cases, where the influences of different factors on reduced plate area length of the RBM model are also investigated. Then a vehicle-pavement interaction case with constant and variable speed is analyzed here. The calculation results from the moving plate element are in good agreement with those from the modal superposition method (MSM), and the calculation time with the moving plate element is only one third of that using the MSM. It is also found that the moving load velocity and ground damping have great influences on reduced plate area length of the RBM. The moving plate element is accurate and more efficient than the MSM in calculating the dynamic response of the vehicle-pavement interaction.


Sign in / Sign up

Export Citation Format

Share Document