Eigenvalue Problems with Application in Structural Dynamics

1992 ◽  
Vol 10-10 (3-4) ◽  
pp. 247-262 ◽  
Author(s):  
T. Hwang ◽  
I. D. Parsons

1987 ◽  
Vol 109 (2) ◽  
pp. 244-248 ◽  
Author(s):  
I.-W. Yu

The subspace iteration method, commonly used for solving symmetric eigenvalue problems in structural dynamics, can be extended to solve nonsymmetric fluid-structure interaction problems in terms of fluid pressure and structural displacement. The two cornerstones for such extension are a nonsymmetric equation solver for the inverse iteration and a nonsymmetric eigen-procedure for subspace eigen-solution. The implementation of a nonsymmetric equation solver can easily be obtained by modifying the existing symmetric procedure; however, the nonsymmetric eigen-solver requires a new procedure such as the real form of the LZ-algorithm. With these extensions the subspace iteration method can solve large fluid-structure interaction problems by extracting a group of eigenpairs at a time. The method can generally be applied to compressible and incompressible fluid-structure interaction problems.


Sign in / Sign up

Export Citation Format

Share Document