Knots and links

2021 ◽  
pp. 47-76
Keyword(s):  
Author(s):  
Peter R. Cromwell
Keyword(s):  

2016 ◽  
Vol 56 (2) ◽  
pp. 274-314 ◽  
Author(s):  
Chaim Even-Zohar ◽  
Joel Hass ◽  
Nati Linial ◽  
Tahl Nowik
Keyword(s):  

Author(s):  
Hwa Jeong Lee ◽  
Sungjong No ◽  
Seungsang Oh

Negami found an upper bound on the stick number [Formula: see text] of a nontrivial knot [Formula: see text] in terms of the minimal crossing number [Formula: see text]: [Formula: see text]. Huh and Oh found an improved upper bound: [Formula: see text]. Huh, No and Oh proved that [Formula: see text] for a [Formula: see text]-bridge knot or link [Formula: see text] with at least six crossings. As a sequel to this study, we present an upper bound on the stick number of Montesinos knots and links. Let [Formula: see text] be a knot or link which admits a reduced Montesinos diagram with [Formula: see text] crossings. If each rational tangle in the diagram has five or more index of the related Conway notation, then [Formula: see text]. Furthermore, if [Formula: see text] is alternating, then we can additionally reduce the upper bound by [Formula: see text].


Author(s):  
Michael O'Keeffe ◽  
Michael M. J. Treacy

This article describes the simplest members of an infinite family of knots and links that have achiral piecewise-linear embeddings in which linear segments (sticks) meet at corners. The structures described are all corner- and stick-2-transitive – the smallest possible for achiral knots.


2017 ◽  
Vol 26 (08) ◽  
pp. 1750048 ◽  
Author(s):  
Deanna Needell ◽  
Sam Nelson

We introduce dual graph diagrams representing oriented knots and links. We use these combinatorial structures to define corresponding algebraic structures which we call biquasiles whose axioms are motivated by dual graph Reidemeister moves, generalizing the Dehn presentation of the knot group analogously to the way quandles and biquandles generalize the Wirtinger presentation. We use these structures to define invariants of oriented knots and links and provide examples.


2019 ◽  
Vol 28 (05) ◽  
pp. 1950033
Author(s):  
Zac Bettersworth ◽  
Claus Ernst

In the paper, we study the incoherent nullification number [Formula: see text] of knots and links. We establish an upper bound on the incoherent nullification number of torus knots and links and conjecture that this upper bound is the actual incoherent nullification number of this family. Finally, we establish the actual incoherent nullification number of particular subfamilies of torus knots and links.


2014 ◽  
Vol 23 (11) ◽  
pp. 1450058 ◽  
Author(s):  
Claus Ernst ◽  
Anthony Montemayor

It is known that a knot/link can be nullified, i.e. can be made into the trivial knot/link, by smoothing some crossings in a projection diagram of the knot/link. The minimum number of such crossings to be smoothed in order to nullify the knot/link is called the nullification number. In this paper we investigate the nullification numbers of a particular knot family, namely the family of torus knots and links.


Sign in / Sign up

Export Citation Format

Share Document