polynomial invariants
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 29)

H-INDEX

25
(FIVE YEARS 2)

Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
Amrendra Gill ◽  
Maxim Ivanov ◽  
Madeti Prabhakar ◽  
Andrei Vesnin

F-polynomials for virtual knots were defined by Kaur, Prabhakar and Vesnin in 2018 using flat virtual knot invariants. These polynomials naturally generalize Kauffman’s affine index polynomial and use smoothing in the classical crossing of a virtual knot diagram. In this paper, we introduce weight functions for ordered orientable virtual and flat virtual links. A flat virtual link is an equivalence class of virtual links with respect to a local symmetry changing a type of classical crossing in a diagram. By considering three types of smoothing in classical crossings of a virtual link diagram and suitable weight functions, there is provided a recurrent construction for new invariants. It is demonstrated by explicit examples that newly defined polynomial invariants are stronger than F-polynomials.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3221
Author(s):  
Marina Bershadsky ◽  
Božidar Ivanković

The basis polynomial invariants with even degrees relatively to the symmetries group were described in cited literature. Here, the polynomial invariants with odd degrees are constructed. We give an explicit construction of all the basic polynomial invariants as algebra generators of odd degrees relatively to the symmetries group. All calculations are presented in detail.


2021 ◽  
Author(s):  
◽  
Deborah Crook

<p>In this work, we examine the polynomial invariants of the special Euclidean group in three dimensions, SE(3), in its action on multiple screw systems. We look at the problem of finding generating sets for these invariant subalgebras, and also briefly describe the invariants for the standard actions on R^n of both SE(3) and SO(3). The problem of the screw system action is then approached using SAGBI basis techniques, which are used to find invariants for the translational subaction of SE(3), including a full basis in the one and two-screw cases. These are then compared to the known invariants of the rotational subaction. In the one and two-screw cases, we successfully derive a full basis for the SE(3) invariants, while in the three-screw case, we suggest some possible lines of approach.</p>


2021 ◽  
Author(s):  
◽  
Deborah Crook

<p>In this work, we examine the polynomial invariants of the special Euclidean group in three dimensions, SE(3), in its action on multiple screw systems. We look at the problem of finding generating sets for these invariant subalgebras, and also briefly describe the invariants for the standard actions on R^n of both SE(3) and SO(3). The problem of the screw system action is then approached using SAGBI basis techniques, which are used to find invariants for the translational subaction of SE(3), including a full basis in the one and two-screw cases. These are then compared to the known invariants of the rotational subaction. In the one and two-screw cases, we successfully derive a full basis for the SE(3) invariants, while in the three-screw case, we suggest some possible lines of approach.</p>


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1751
Author(s):  
Alireza Mashaghi ◽  
Roland van der Veen

The topological framework of circuit topology has recently been introduced to complement knot theory and to help in understanding the physics of molecular folding. Naturally evolved linear molecular chains, such as proteins and nucleic acids, often fold into 3D conformations with critical chain entanglements and local or global structural symmetries stabilised by formation contacts between different parts of the chain. Circuit topology captures the arrangements of intra-chain contacts within a given folded linear chain and allows for the classification and comparison of chains. Contacts keep chain segments in physical proximity and can be either mechanically hard attachments or soft entanglements that constrain a physical chain. Contrary to knot theory, which offers many established knot invariants, circuit invariants are just being developed. Here, we present polynomial invariants that are both efficient and sufficiently powerful to deal with any combination of soft and hard contacts. A computer implementation and table of chains with up to three contacts is also provided.


Author(s):  
A. BOLSINOV ◽  
A. IZOSIMOV ◽  
I. KOZLOV

AbstractFor an arbitrary representation ρ of a complex finite-dimensional Lie algebra, we construct a collection of numbers that we call the Jordan–Kronecker invariants of ρ. Among other interesting properties, these numbers provide lower bounds for degrees of polynomial invariants of ρ. Furthermore, we prove that these lower bounds are exact if and only if the invariants are independent outside of a set of large codimension. Finally, we show that under certain additional assumptions our bounds are exact if and only if the algebra of invariants is freely generated.


Sign in / Sign up

Export Citation Format

Share Document