OPTICAL CAVITIES AND GRAVITY - WAVE DETECTORS

Author(s):  
RONALD DREVER
2012 ◽  
Vol 18 (4(77)) ◽  
pp. 30-36 ◽  
Author(s):  
Y.I. Kryuchkov ◽  
◽  
O.K. Cheremnykh ◽  
A.K. Fedorenko ◽  
◽  
...  

1987 ◽  
Author(s):  
D. M. Ross ◽  
C. Brune ◽  
C. D. Marrs
Keyword(s):  

Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

Both rich fundamental physics of microcavities and their intriguing potential applications are addressed in this book, oriented to undergraduate and postgraduate students as well as to physicists and engineers. We describe the essential steps of development of the physics of microcavities in their chronological order. We show how different types of structures combining optical and electronic confinement have come into play and were used to realize first weak and later strong light–matter coupling regimes. We discuss photonic crystals, microspheres, pillars and other types of artificial optical cavities with embedded semiconductor quantum wells, wires and dots. We present the most striking experimental findings of the recent two decades in the optics of semiconductor quantum structures. We address the fundamental physics and applications of superposition light-matter quasiparticles: exciton-polaritons and describe the most essential phenomena of modern Polaritonics: Physics of the Liquid Light. The book is intended as a working manual for advanced or graduate students and new researchers in the field.


Sign in / Sign up

Export Citation Format

Share Document