quantum wells
Recently Published Documents


TOTAL DOCUMENTS

18781
(FIVE YEARS 1192)

H-INDEX

164
(FIVE YEARS 13)

Nano Energy ◽  
2022 ◽  
Vol 93 ◽  
pp. 106800
Author(s):  
Chang Liu ◽  
Zhi Fang ◽  
Jinsong Sun ◽  
Minghui Shang ◽  
Kanghui Zheng ◽  
...  

2022 ◽  
Vol 147 ◽  
pp. 107655
Author(s):  
R. Ranjith ◽  
S. Piramasubramanian ◽  
M. Ganesh Madhan

2022 ◽  
Vol 147 ◽  
pp. 107702
Author(s):  
Zhongliang Qiao ◽  
Xiang Li ◽  
Jia XuBrian Sia ◽  
WanJun Wang ◽  
Hong Wang ◽  
...  

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Shiqiang Lu ◽  
Zongyan Luo ◽  
Jinchai Li ◽  
Wei Lin ◽  
Hangyang Chen ◽  
...  

AbstractA systematic study was carried out for strain-induced microscale compositional pulling effect on the structural and optical properties of high Al content AlGaN multiple quantum wells (MQWs). Investigations reveal that a large tensile strain is introduced during the epitaxial growth of AlGaN MQWs, due to the grain boundary formation, coalescence and growth. The presence of this tensile strain results in the microscale inhomogeneous compositional pulling and Ga segregation, which is further confirmed by the lower formation enthalpy of Ga atom than Al atom on AlGaN slab using first principle simulations. The strain-induced microscale compositional pulling leads to an asymmetrical feature of emission spectra and local variation in emission energy of AlGaN MQWs. Because of a stronger three-dimensional carrier localization, the area of Ga segregation shows a higher emission efficiency compared with the intrinsic area of MQWs, which is benefit for fabricating efficient AlGaN-based deep-ultraviolet light-emitting diode.


Author(s):  
Shawutijiang Sidikejiang ◽  
Philipp Henning ◽  
Philipp Horenburg ◽  
Heiko Bremers ◽  
Uwe Rossow ◽  
...  

Abstract We compare the low-temperature photoluminescence (PL) intensities of a range of GaInN/GaN quantum well (QW) structures under identical excitation conditions, mounting the samples side by side. Normalizing the measured intensity to the absorbed power density in the QWs, we find that low-temperature PL efficiencies of several samples, which show close to 100% IQE in time-resolved PL, saturate at nearly an identical value. Of course, this is strong indicative of being 100% IQE at low temperature for those efficient samples. Using the low-temperature PL efficiency as a ``Reference'', on the other hand, we observe not only the effects of temperature-independent non-radiative losses on the low-temperature IQE, but also are able to determine the IQE of arbitrary samples on an absolute scale. Furthermore, we prove the experimental results by comparing the low-temperature efficiencies of a sample with an initial 100% IQE after intentionally introducing structural defects with argon-implantation.


2022 ◽  
pp. 2108884
Author(s):  
Rui Duan ◽  
Zitong Zhang ◽  
Lian Xiao ◽  
Xiaoxu Zhao ◽  
Yi Tian Thung ◽  
...  

2022 ◽  
Author(s):  
Xiangyang Wei ◽  
Obed Alves Santos ◽  
Cristhian Humberto Sumba Lusero ◽  
Gerrit Bauer ◽  
Jamal Ben Youssef ◽  
...  

Abstract Conductivities are key material parameters that govern various types of transport (electronic charge, spin, heat etc.) driven by thermodynamic forces. Magnons, the elementary excitations of the magnetic order, flow under the gradient of a magnon chemical potential in proportion to a magnon (spin) conductivity σm. The magnetic insulator yttrium iron garnet (YIG) is the material of choice for efficient magnon spin transport. Here we report an unexpected giant σm in record-thin YIG films with thicknesses down to 3.7 nm when the number of occupied two-dimensional (2D) subbands is reduced from a large number to a few, which corresponds to a transition from 3D to 2D magnon transport. We extract a 2D spin conductivity (≈1 S) at room temperature, comparable to the (electronic) spin conductivity of the high-mobility two-dimensional electron gas in GaAs quantum wells at millikelvin temperatures. Such high conductivities offer unique opportunities to develop low-dissipation magnon-based spintronic devices.


Sign in / Sign up

Export Citation Format

Share Document