experimental findings
Recently Published Documents





Fuel ◽  
2022 ◽  
Vol 314 ◽  
pp. 123066
Xiaodong Huo ◽  
Weiran Zuo ◽  
Fengnian Shi ◽  
Wei Huang

2023 ◽  
Vol 83 ◽  
B. Javed ◽  
F. Farooq ◽  
M. Ibrahim ◽  
H. A. B. Abbas ◽  
H. Jawwad ◽  

Abstract The present study was aimed to manifest the antibacterial and antifungal activity of methanolic extracts of Salix alba L. against seven Gram-positive and Gram-negative bacterial pathogens e.g. Streptococcus pyogenes, Staphylococcus aureus (1), S. aureus (2), Shigella sonnei, Escherichia coli (1), E. coli (2) and Neisseria gonorrhoeae and three fungal isolates from the air such as Aspergillus terreus, A. ornatus, and Rhizopus stolonifer. Two different serotypes of S. aureus and E. coli were used. The agar well-diffusion method results showed the dose-dependent response of plant extracts against bacterial and fungal strains while some organisms were found resistant e.g. E. coli (1), S. sonnei, A. terreus and R. stolonifer. The highest antibacterial activity was recorded at 17.000±1.732 mm from 100 mg/mL of leaves methanolic extracts against S. pyogenes while the activity of most of the pathogens decreased after 24 h of incubation. The highest antifungal activity was reported at 11.833±1.0 mm against A. ornatus at 50 mg/mL after 48 h of the incubation period. These experimental findings endorse the use of S. alba in ethnopharmacological formulations and suggest the use of methanolic extracts of the said plant to develop drugs to control the proliferation of resistant disease causing pathogenic microbes.

HortScience ◽  
2022 ◽  
Vol 57 (2) ◽  
pp. 247-256
Cary A. Mitchell

The most recent platform for protected horticultural crop production, with the shortest history to date, is located entirely indoors, lacking even the benefit of free, natural sunlight. Although this may not sound offhand like a good idea for commercial specialty-crop production, the concept of indoor controlled-environment plant growth started originally for the benefit of researchers—to systematically investigate effects of specific environmental factors on plant growth and development in isolation from environmental factors varying in uncontrolled ways that would confound or change experimental findings. In addition to its value for basic and applied research, it soon was discovered that providing nonlimiting plant-growth environments greatly enhanced crop yield and enabled manipulation of plant development in ways that were never previously possible. As supporting technology for indoor crop production has improved in capability and efficiency, energy requirements have declined substantially for growing crops through entire production cycles in completely controlled environments, and this combination has spawned a new sector of the controlled-environment crop-production industry. This article chronicles the evolution of events, enabling technologies, and entrepreneurial efforts that have brought local, year-round indoor crop production to the forefront of public visibility and the threshold of profitability for a growing number of specialty crops in locations with seasonal climates.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 555
Saikat Mitra ◽  
Shyamjit Paul ◽  
Sumon Roy ◽  
Hriday Sutradhar ◽  
Talha Bin Emran ◽  

Food components have long been recognized to play a fundamental role in the growth and development of the human body, conferring protective functionalities against foreign matter that can be severe public health problems. Micronutrients such as vitamins and minerals are essential to the human body, and individuals must meet their daily requirements through dietary sources. Micronutrients act as immunomodulators and protect the host immune response, thus preventing immune evasion by pathogenic organisms. Several experimental investigations have been undertaken to appraise the immunomodulatory functions of vitamins and minerals. Based on these experimental findings, this review describes the immune-boosting functionalities of micronutrients and the mechanisms of action through which these functions are mediated. Deficiencies of vitamins and minerals in plasma concentrations can lead to a reduction in the performance of the immune system functioning, representing a key contributor to unfavorable immunological states. This review provides a descriptive overview of the characteristics of the immune system and the utilization of micronutrients (vitamins and minerals) in preventative strategies designed to reduce morbidity and mortality among patients suffering from immune invasions or autoimmune disorders.

2022 ◽  
pp. 204141962110654
Tan-Trung Bui ◽  
Dhafar Al Galib ◽  
Abdelkrim Bennani ◽  
Ali Limam

The collapse of tubes under axial load is an important subject from the safety point of view, particularly in the design of energy absorbing devices used in many engineering applications. In this study, quasi-static and dynamic experiments were carried out on square thin-walled aluminum extrusions to investigate the effects of circular holes. Cutouts were introduced in the four corners of the square-section tube, not far from the end boundary of the tube, in order both to decrease the first peak load on the load-displacement characteristic and to control the collapse mode. Different aspects, such as the buckling modes and the energy absorption in quasi-static axial crushing tests, as well as dynamic effects and material rheology contributions in dynamic crushing tests, have been examined. For the dynamic tests, the parameters were the impacting mass and its velocity. The results showed a drop in the first peak function of the openings’ radius and the tube’s energy absorption capacity was kept. A comparison between static and dynamic tests results was carried out and the interpretation of the results in terms of deformation mechanism and energy absorption was discussed. Numerical simulations with the finite element code ABAQUS were conducted to confirm the experimental findings. The results of different numerical models, implicit and explicit calculations, that contribute to a basic understanding of the buckling and prediction of the crash behavior of the aluminum components without and with the cutouts are presented.

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 128
Keiichi Asano ◽  
Anna Cantalupo ◽  
Lauriane Sedes ◽  
Francesco Ramirez

About 20% of individuals afflicted with thoracic aortic disease have single-gene mutations that predispose the vessel to aneurysm formation and/or acute aortic dissection often without associated syndromic features. One widely studied exception is Marfan syndrome (MFS) in which mutations in the extracellular protein fibrillin-1 cause additional abnormalities in the heart, eyes, and skeleton. Mouse models of MFS have been instrumental in delineating major cellular and molecular determinants of thoracic aortic disease. In spite of research efforts, translating experimental findings from MFS mice into effective drug therapies for MFS patients remains an unfulfilled promise. Here, we describe a series of studies that have implicated endothelial dysfunction and improper angiotensin II and TGFβ signaling in driving thoracic aortic disease in MFS mice. We also discuss how these investigations have influenced the way we conceptualized possible new therapies to slow down or even halt aneurysm progression in this relatively common connective tissue disorder.

2022 ◽  
Vol 15 ◽  
Ehsan Rezayat ◽  
Kelsey Clark ◽  
Mohammad-Reza A. Dehaqani ◽  
Behrad Noudoost

Neural signatures of working memory (WM) have been reported in numerous brain areas, suggesting a distributed neural substrate for memory maintenance. In the current manuscript we provide an updated review of the literature focusing on intracranial neurophysiological recordings during WM in primates. Such signatures of WM include changes in firing rate or local oscillatory power within an area, along with measures of coordinated activity between areas based on synchronization between oscillations. In comparing the ability of various neural signatures in any brain area to predict behavioral performance, we observe that synchrony between areas is more frequently and robustly correlated with WM performance than any of the within-area neural signatures. We further review the evidence for alteration of inter-areal synchrony in brain disorders, consistent with an important role for such synchrony during behavior. Additionally, results of causal studies indicate that manipulating synchrony across areas is especially effective at influencing WM task performance. Each of these lines of research supports the critical role of inter-areal synchrony in WM. Finally, we propose a framework for interactions between prefrontal and sensory areas during WM, incorporating a range of experimental findings and offering an explanation for the observed link between intra-areal measures and WM performance.

2022 ◽  
Vol 13 (1) ◽  
Zhiwei Ding ◽  
Ke Chen ◽  
Bai Song ◽  
Jungwoo Shin ◽  
Alexei A. Maznev ◽  

AbstractSecond sound refers to the phenomenon of heat propagation as temperature waves in the phonon hydrodynamic transport regime. We directly observe second sound in graphite at temperatures of over 200 K using a sub-picosecond transient grating technique. The experimentally determined dispersion relation of the thermal-wave velocity increases with decreasing grating period, consistent with first-principles-based solution of the Peierls-Boltzmann transport equation. Through simulation, we reveal this increase as a result of thermal zero sound—the thermal waves due to ballistic phonons. Our experimental findings are well explained with the interplay among three groups of phonons: ballistic, diffusive, and hydrodynamic phonons. Our ab initio calculations further predict a large isotope effect on the properties of thermal waves and the existence of second sound at room temperature in isotopically pure graphite.

Sign in / Sign up

Export Citation Format

Share Document