scholarly journals Sasaki Manifolds, Kähler Cone Manifolds and Biharmonic Submanifolds

2018 ◽  
pp. 221-235
Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Giulia Dileo

We introduce a new class of almost 3-contact metric manifolds, called 3-(0,δ)-Sasaki manifolds. We show fundamental geometric properties of these manifolds, analyzing analogies and differences with the known classes of 3-(α,δ)-Sasaki (α≠0) and 3-δ-cosymplectic manifolds.


2012 ◽  
Vol 23 (03) ◽  
pp. 1250003 ◽  
Author(s):  
QUN CHEN ◽  
WUBIN ZHOU

The main purpose of this paper is to study the properties of transversally harmonic maps by using Bochner-type formulas. As an application, we obtain the following theorem between compact Sasaki manifolds: Let f be a transversally harmonic map from compact Sasaki manifold M to compact Sasaki manifold M′, and M′ has a strongly negative transverse curvature. If the rank of dTf is at least three at some points of M, then f is contact holomorphic (or contact anti-holomorphic).


2021 ◽  
Vol 6 (9) ◽  
pp. 9309-9321
Author(s):  
Yanlin Li ◽  
◽  
Mehraj Ahmad Lone ◽  
Umair Ali Wani ◽  

2020 ◽  
Vol 20 (3) ◽  
pp. 331-374 ◽  
Author(s):  
Ilka Agricola ◽  
Giulia Dileo

AbstractIn the first part, we define and investigate new classes of almost 3-contact metric manifolds, with two guiding ideas in mind: first, what geometric objects are best suited for capturing the key properties of almost 3-contact metric manifolds, and second, the new classes should admit ‘good’ metric connections with skew torsion. In particular, we introduce the Reeb commutator function and the Reeb Killing function, we define the new classes of canonical almost 3-contact metric manifolds and of 3-(α, δ)-Sasaki manifolds (including as special cases 3-Sasaki manifolds, quaternionic Heisenberg groups, and many others) and prove that the latter are hypernormal, thus generalizing a seminal result of Kashiwada. We study their behaviour under a new class of deformations, called 𝓗-homothetic deformations, and prove that they admit an underlying quaternionic contact structure, from which we deduce the Ricci curvature. For example, a 3-(α, δ)-Sasaki manifold is Einstein either if α = δ (the 3-α-Sasaki case) or if δ = (2n + 3)α, where dim M = 4n + 3.In the second part we find these adapted connections. We start with a very general notion of φ-compatible connections, where φ denotes any element of the associated sphere of almost contact structures, and make them unique by a certain extra condition, thus yielding the notion of canonical connection (they exist exactly on canonical manifolds, hence the name). For 3-(α, δ)-Sasaki manifolds, we compute the torsion of this connection explicitly and we prove that it is parallel, we describe the holonomy, the ∇-Ricci curvature, and we show that the metric cone is a HKT-manifold. In dimension 7, we construct a cocalibrated G2-structure inducing the canonical connection and we prove the existence of four generalized Killing spinors.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 710 ◽  
Author(s):  
Bang-Yen Chen

The well known Chen’s conjecture on biharmonic submanifolds in Euclidean spaces states that every biharmonic submanifold in a Euclidean space is a minimal one. For hypersurfaces, we know from Chen and Jiang that the conjecture is true for biharmonic surfaces in E 3 . Also, Hasanis and Vlachos proved that biharmonic hypersurfaces in E 4 ; and Dimitric proved that biharmonic hypersurfaces in E m with at most two distinct principal curvatures. Chen and Munteanu showed that the conjecture is true for δ ( 2 ) -ideal and δ ( 3 ) -ideal hypersurfaces in E m . Further, Fu proved that the conjecture is true for hypersurfaces with three distinct principal curvatures in E m with arbitrary m. In this article, we provide another solution to the conjecture, namely, we prove that biharmonic surfaces do not exist in any Euclidean space with parallel normalized mean curvature vectors.


Sign in / Sign up

Export Citation Format

Share Document