A Simulated Annealing-Based Barzilai–Borwein Gradient Method for Unconstrained Optimization Problems

2019 ◽  
Vol 36 (04) ◽  
pp. 1950017 ◽  
Author(s):  
Wen-Li Dong ◽  
Xing Li ◽  
Zheng Peng

In this paper, we propose a simulated annealing-based Barzilai–Borwein (SABB) gradient method for unconstrained optimization problems. The SABB method accepts the Barzilai–Borwein (BB) step by a simulated annealing rule. If the BB step cannot be accepted, the Armijo line search is used. The global convergence of the SABB method is established under some mild conditions. Numerical experiments indicate that, compared to some existing BB methods using nonmonotone line search technique, the SABB method performs well with high efficiency.

2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Yunlong Lu ◽  
Weiwei Yang ◽  
Wenyu Li ◽  
Xiaowei Jiang ◽  
Yueting Yang

A new trust region method is presented, which combines nonmonotone line search technique, a self-adaptive update rule for the trust region radius, and the weighting technique for the ratio between the actual reduction and the predicted reduction. Under reasonable assumptions, the global convergence of the method is established for unconstrained nonconvex optimization. Numerical results show that the new method is efficient and robust for solving unconstrained optimization problems.


Author(s):  
Pro Kaelo ◽  
Sindhu Narayanan ◽  
M.V. Thuto

This article presents a modified quadratic hybridization of the Polak–Ribiere–Polyak and Fletcher–Reeves conjugate gradient method for solving unconstrained optimization problems. Global convergence, with the strong Wolfe line search conditions, of the proposed quadratic hybrid conjugate gradient method is established. We also report some numerical results to show the competitiveness of the new hybrid method.


2018 ◽  
Vol 7 (3.28) ◽  
pp. 92
Author(s):  
Talat Alkouli ◽  
Mustafa Mamat ◽  
Mohd Rivaie ◽  
Puspa Liza Ghazali

In this paper, an efficient modification of nonlinear conjugate gradient method and an associated implementation, based on an exact line search, are proposed and analyzed to solve large-scale unconstrained optimization problems. The method satisfies the sufficient descent property. Furthermore, global convergence result is proved. Computational results for a set of unconstrained optimization test problems, some of them from CUTE library, showed that this new conjugate gradient algorithm seems to converge more stable and outperforms the other similar methods in many situations.   


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Jiankun Liu ◽  
Shouqiang Du

We propose a modified three-term conjugate gradient method with the Armijo line search for solving unconstrained optimization problems. The proposed method possesses the sufficient descent property. Under mild assumptions, the global convergence property of the proposed method with the Armijo line search is proved. Due to simplicity, low storage, and nice convergence properties, the proposed method is used to solve M-tensor systems and a kind of nonsmooth optimization problems with l1-norm. Finally, the given numerical experiments show the efficiency of the proposed method.


2018 ◽  
Vol 7 (2.14) ◽  
pp. 21
Author(s):  
Omar Alshorman ◽  
Mustafa Mamat ◽  
Ahmad Alhawarat ◽  
Mohd Revaie

The Conjugate Gradient (CG) methods play an important role in solving large-scale unconstrained optimization problems. Several studies have been recently devoted to improving and modifying these methods in relation to efficiency and robustness. In this paper, a new parameter of CG method has been proposed. The new parameter possesses global convergence properties under the Strong Wolfe-Powell (SWP) line search. The numerical results show that the proposed formula is more efficient and robust compared with Polak-Rribiere Ployak (PRP), Fletcher-Reeves (FR) and Wei, Yao, and Liu (WYL) parameters.  


Author(s):  
Ibrahim Abdullahi ◽  
Rohanin Ahmad

In this paper, we propose a new hybrid conjugate gradient method for unconstrained optimization problems. The proposed method comprises of beta (DY), beta (WHY), beta (RAMI)  and beta (New). The beta (New)  was constructed purposely for this proposed hybrid method.The method possesses sufficient descent property irrespective of the line search. Under Strong Wolfe-Powell line search, we proved that the method is globally convergent. Numerical experimentation shows the effectiveness and robustness of the proposed method when compare with some hybrid as well as some modified conjugate gradient methods.


2009 ◽  
Vol 2009 ◽  
pp. 1-14 ◽  
Author(s):  
Gonglin Yuan

A hybrid method combining the FR conjugate gradient method and the WYL conjugate gradient method is proposed for unconstrained optimization problems. The presented method possesses the sufficient descent property under the strong Wolfe-Powell (SWP) line search rule relaxing the parameterσ<1. Under the suitable conditions, the global convergence with the SWP line search rule and the weak Wolfe-Powell (WWP) line search rule is established for nonconvex function. Numerical results show that this method is better than the FR method and the WYL method.


2014 ◽  
Vol 8 (1) ◽  
pp. 218-221 ◽  
Author(s):  
Ping Hu ◽  
Zong-yao Wang

We propose a non-monotone line search combination rule for unconstrained optimization problems, the corresponding non-monotone search algorithm is established and its global convergence can be proved. Finally, we use some numerical experiments to illustrate the new combination of non-monotone search algorithm’s effectiveness.


Sign in / Sign up

Export Citation Format

Share Document