QUANTUM FIELD THEORY RENORMALIZATION GROUP APPROACH TO SELF-ORGANIZED CRITICAL MODELS: THE CASE OF RANDOM BOUNDARIES

2002 ◽  
Vol 16 (08) ◽  
pp. 1171-1204 ◽  
Author(s):  
D. VOLCHENKOV ◽  
PH. BLANCHARD ◽  
B. CESSAC

The long time and large scale asymptotic behavior for a stochastic problem related to self-organized critical (SOC) models is studied in the framework of advanced quantum field theory renormalization group (RG) method. The threshold condition and time scale separation between the slow dynamics of energy injection and the fast dynamics of avalanches (relaxation) are taken into account in the model. Herewith, the reciprocal correlation time at wavenumber k scales as tc(k) ∝ k-2+2η with some phenomenological parameter η > 0 corresponding to the anomalous diffusion coefficient z = 2(1 - η). The quantum field theory corresponding to the nonlinear stochastic problem is multiplicatively renormalizable and has an infinite number of coupling constants. The RG equations have a two-dimensional manifold of fixed points. Some of them relate to the stable asymptotic solutions and stipulate a general scaling with the critical dimensions of time Δ[t] = -2 + 2η and the energy field Δ[E] = d/2 - 3(1 - η). Possible corrections to the leading asymptotic behavior are discussed.

2020 ◽  
pp. 289-318
Author(s):  
Giuseppe Mussardo

Chapter 8 introduces the key ideas of the renormalization group, including how they provide a theoretical scheme and a proper language to face critical phenomena. It covers the scaling transformations of a system and their implementations in the space of the coupling constants and reducing the degrees of freedom. From this analysis, the reader is led to the important notion of relevant, irrelevant and marginal operators and then to the universality of the critical phenomena. Furthermore, the chapter also covers (as regards the RG) transformation laws, effective Hamiltonians, the Gaussian model, the Ising model, operators of quantum field theory, universal ratios, critical exponents and β‎-functions.


2009 ◽  
Vol 29 (2) ◽  
pp. 419-431 ◽  
Author(s):  
E. DE SIMONE ◽  
A. KUPIAINEN

AbstractWe give an elementary proof of the analytic KAM theorem by reducing it to a Picard iteration of a certain PDE with quadratic nonlinearity, the so-called Polchinski renormalization group equation studied in quantum field theory.


1956 ◽  
Vol 3 (5) ◽  
pp. 845-863 ◽  
Author(s):  
N. N. Bogoljubov ◽  
D. V. šiekov

Sign in / Sign up

Export Citation Format

Share Document