Local Stereo Matching: An Adaptive Weighted Guided Image Filtering-Based Approach

Author(s):  
Ben Zhang ◽  
Denglin Zhu

Innovative applications in rapidly evolving domains such as robotic navigation and autonomous (driverless) vehicles rely on binocular computer vision systems that meet stringent response time and accuracy requirements. A key problem in these vision systems is stereo matching, which involves matching pixels from two input images in order to construct the output, a 3D map. Building upon the existing local stereo matching algorithms, this paper proposes a novel stereo matching algorithm that is based on a weighted guided filtering foundation. The proposed algorithm consists of three main steps; each step is designed with the goal of improving accuracy. First, the matching costs are computed using a unique combination of complementary methods (absolute difference, Census, and gradient algorithms) to reduce errors. Second, the costs are aggregated using an adaptive weighted guided image filtering method. Here, the regularization parameters are adjusted adaptively using the Canny method, further reducing errors. Third, a disparity map is generated using the winner-take-all strategy; this map is subsequently refined using a densification method to reduce errors. Our experimental results indicate that the proposed algorithm provides a higher level of accuracy in comparison to a collection of the existing state-of-the-art local algorithms.

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Lingyin Kong ◽  
Jiangping Zhu ◽  
Sancong Ying

Adaptive cross-region-based guided image filtering (ACR-GIF) is a commonly used cost aggregation method. However, the weights of points in the adaptive cross-region (ACR) are generally not considered, which affects the accuracy of disparity results. In this study, we propose an improved cost aggregation method to address this issue. First, the orthogonal weight is proposed according to the structural feature of the ACR, and then the orthogonal weight of each point in the ACR is computed. Second, the matching cost volume is filtered using ACR-GIF with orthogonal weights (ACR-GIF-OW). In order to reduce the computing time of the proposed method, an efficient weighted aggregation computing method based on orthogonal weights is proposed. Additionally, by combining ACR-GIF-OW with our recently proposed matching cost computation method and disparity refinement method, a local stereo matching algorithm is proposed as well. The results of Middlebury evaluation platform show that, compared with ACR-GIF, the proposed cost aggregation method can significantly improve the disparity accuracy with less additional time overhead, and the performance of the proposed stereo matching algorithm outperforms other state-of-the-art local and nonlocal algorithms.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Chengtao Zhu ◽  
Yau-Zen Chang

This paper presents an effective cost aggregation strategy for dense stereo matching. Based on the guided image filtering (GIF), we propose a new aggregation scheme called Pervasive Guided Image Filtering (PGIF) to introduce weightings to the energy function of the filter which allows the whole image pair to be taken into account. The filter parameters of PGIF are calculated as two-dimensional convolution using the bright and spatial differences between the corresponding pixels, which can be incrementally calculated for efficient aggregation. The complexity of the proposed algorithm is O(N), which is linear to the number of image pixels. Furthermore, the algorithm can be further simplified into O(N/4) without significantly sacrificing accuracy if subsampling is applied in the stage of parameter calculation. We also found that a step function to attenuate noise is required in calculating the weights. Experimental evaluation on version 3 of the Middlebury stereo evaluation datasets shows that the proposed method achieves superior disparity accuracy over state-of-the-art aggregation methods with comparable processing speed.


2018 ◽  
Vol 38 (1) ◽  
pp. 0115004
Author(s):  
刘杰 Liu Jie ◽  
张建勋 Zhang Jianxun ◽  
代煜 Dai Yu ◽  
苏赫 Su He

Author(s):  
Asmaa Hosni ◽  
Michael Bleyer ◽  
Christoph Rhemann ◽  
Margrit Gelautz ◽  
Carsten Rother

Sign in / Sign up

Export Citation Format

Share Document