cost aggregation
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 30)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Aixin Chong ◽  
Hui Yin ◽  
Yanting Liu ◽  
Jin Wan ◽  
Zhihao Liu ◽  
...  

2021 ◽  
Author(s):  
Rongcheng Wu ◽  
Changming Sun ◽  
Zhaoying Liu ◽  
Arcot Sowmya

2021 ◽  
Author(s):  
Wei Guo ◽  
Ziyu Zhu ◽  
Fukun Xia ◽  
Jiarui Sun ◽  
Yong Zhao

2021 ◽  
Author(s):  
jin sheng ◽  
Hong Zhao ◽  
Penghui Bu ◽  
Jiaxing Yan

Author(s):  
A. F. Kadmin ◽  
R. A. Hamzah ◽  
M. N. Abd Manap ◽  
M. S. Hamid ◽  
T. F. Tg. Wook

Stereo matching is an essential subject in stereo vision architecture. Traditional framework composition consists of several constraints in stereo correspondences such as illumination variations in images and inadequate or non-uniform light due to uncontrollable environments. This work improves the local method stereo matching algorithm based on the dynamic cost computation method for depth measurement. This approach utilised modified dynamic cost computation in the matching cost. A modified census transform with dynamic histogram is used to provide the cost in the cost computation. The algorithm applied the fixed-window strategy with bilateral filtering to retain image depth information and edge in the cost aggregation stage. A winner takes all (WTA) optimisation and left-right check with adaptive bilateral median filtering are employed for disparity refinement. Based on the Middlebury benchmark dataset, the algorithm developed in this work has better accuracy and outperformed several other state-of-the-art algorithms.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Lingyin Kong ◽  
Jiangping Zhu ◽  
Sancong Ying

Adaptive cross-region-based guided image filtering (ACR-GIF) is a commonly used cost aggregation method. However, the weights of points in the adaptive cross-region (ACR) are generally not considered, which affects the accuracy of disparity results. In this study, we propose an improved cost aggregation method to address this issue. First, the orthogonal weight is proposed according to the structural feature of the ACR, and then the orthogonal weight of each point in the ACR is computed. Second, the matching cost volume is filtered using ACR-GIF with orthogonal weights (ACR-GIF-OW). In order to reduce the computing time of the proposed method, an efficient weighted aggregation computing method based on orthogonal weights is proposed. Additionally, by combining ACR-GIF-OW with our recently proposed matching cost computation method and disparity refinement method, a local stereo matching algorithm is proposed as well. The results of Middlebury evaluation platform show that, compared with ACR-GIF, the proposed cost aggregation method can significantly improve the disparity accuracy with less additional time overhead, and the performance of the proposed stereo matching algorithm outperforms other state-of-the-art local and nonlocal algorithms.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1430
Author(s):  
Xiaogang Jia ◽  
Wei Chen ◽  
Zhengfa Liang ◽  
Xin Luo ◽  
Mingfei Wu ◽  
...  

Stereo matching is an important research field of computer vision. Due to the dimension of cost aggregation, current neural network-based stereo methods are difficult to trade-off speed and accuracy. To this end, we integrate fast 2D stereo methods with accurate 3D networks to improve performance and reduce running time. We leverage a 2D encoder-decoder network to generate a rough disparity map and construct a disparity range to guide the 3D aggregation network, which can significantly improve the accuracy and reduce the computational cost. We use a stacked hourglass structure to refine the disparity from coarse to fine. We evaluated our method on three public datasets. According to the KITTI official website results, Our network can generate an accurate result in 80 ms on a modern GPU. Compared to other 2D stereo networks (AANet, DeepPruner, FADNet, etc.), our network has a big improvement in accuracy. Meanwhile, it is significantly faster than other 3D stereo networks (5× than PSMNet, 7.5× than CSN and 22.5× than GANet, etc.), demonstrating the effectiveness of our method.


Sign in / Sign up

Export Citation Format

Share Document