Siamese Network Object Tracking Algorithm Combining Attention Mechanism and Correlation Filter Theory

Author(s):  
Xiuhua Hu ◽  
Huan Liu ◽  
Yuan Chen ◽  
Yan Hui ◽  
Yingyu Liang ◽  
...  

Aiming to solve the problem of tracking drift during movement, which was caused by the lack of discriminability of the feature information and the failure of a fixed template to adapt to the change of object appearance, the paper proposes an object tracking algorithm combining attention mechanism and correlation filter theory based on the framework of full convolutional Siamese neural networks. Firstly, the apparent information is processed by using the attention mechanism thought, where the object and search area features are optimized according to the spatial attention and channel attention module. At the same time, the cross-attention module is introduced to process the template branch and search area branch, respectively, which makes full use of the diversified context information of the search area. Then, the background perception correlation filter model with scale adaptation and learning rate adjustment is adopted into the model construction, using as a layer in the network model to realize the object template update. Finally, the optimal object location is determined according to the confidence map with similarity calculation. Experimental results show that the designed method in the paper can promote the object tracking performance under various challenging environments effectively; the success rate increases by 16.2%, and the accuracy rate increases by 16%.

Author(s):  
D. Zhang ◽  
J. Lv ◽  
Z. Cheng ◽  
Y. Bai ◽  
Y. Cao

Abstract. After the development of deep learning object tracking methods in recent years, the fully convolutional siamese network object tracking algorithm SiamFC has become a more classic deep learning object tracking algorithm. In view of the problem that the accuracy of the tracking results of SiamFC will be reduced in the case of complex backgrounds, this paper introduces the attention mechanism based on the SiamFC, which performs channel and spatial weighting on the feature maps obtained by convolution of the input image. At the same time, the backbone network model of CNN in the algorithm is adjusted, then the siamese network combined with attention mechanism for object tracking is proposed. It can strengthen the effectiveness of the results of feature extraction and enhance the ability of the network model to discriminate targets. In this paper, the algorithm is tested on the OTB2015, VOT2016 and VOT2017 datasets, and compared with multiple object tracking algorithms. Experimental results show that the algorithm in this paper can better solve the complex background problem in object tracking, and has certain advantages compared with other algorithms.


2018 ◽  
Vol 47 (12) ◽  
pp. 1226004
Author(s):  
葛宝义 Ge Baoyi ◽  
左宪章 Zuo Xianzhang ◽  
胡永江 Hu Yongjiang ◽  
张 岩 Zhang Yan

2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Ming-Xin Jiang ◽  
Jun-Xing Zhang ◽  
Min Li

We present an online object tracking algorithm based on feature grouping and two-dimensional principal component analysis (2DPCA). Firstly, we introduce regularization into the 2DPCA reconstruction and develop an iterative algorithm to represent an object by 2DPCA bases. Secondly, the object templates are grouped into a more discriminative image and a less discriminative image by computing the variance of the pixels in multiple frames. Then, the projection matrix is learned according to the more discriminative image and the less discriminative image, and the samples are projected. The object tracking results are obtained using Bayesian maximum a posteriori probability estimation. Finally, we employ a template update strategy which combines incremental subspace learning and the error matrix to reduce tracking drift. Compared with other popular methods, our method reduces the computational complexity and is very robust to abnormal changes. Both qualitative and quantitative evaluations on challenging image sequences demonstrate that the proposed tracking algorithm achieves more favorable performance than several state-of-the-art methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ming-Xin Jiang ◽  
Min Li ◽  
Hong-Yu Wang

We present a novel visual object tracking algorithm based on two-dimensional principal component analysis (2DPCA) and maximum likelihood estimation (MLE). Firstly, we introduce regularization into the 2DPCA reconstruction and develop an iterative algorithm to represent an object by 2DPCA bases. Secondly, the model of sparsity constrained MLE is established. Abnormal pixels in the samples will be assigned with low weights to reduce their effects on the tracking algorithm. The object tracking results are obtained by using Bayesian maximum a posteriori (MAP) probability estimation. Finally, to further reduce tracking drift, we employ a template update strategy which combines incremental subspace learning and the error matrix. This strategy adapts the template to the appearance change of the target and reduces the influence of the occluded target template as well. Compared with other popular methods, our method reduces the computational complexity and is very robust to abnormal changes. Both qualitative and quantitative evaluations on challenging image sequences demonstrate that the proposed tracking algorithm achieves more favorable performance than several state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document