subspace learning
Recently Published Documents


TOTAL DOCUMENTS

656
(FIVE YEARS 217)

H-INDEX

40
(FIVE YEARS 10)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chaofan Hu ◽  
Zhichao Zhou ◽  
Biao Wang ◽  
WeiGuang Zheng ◽  
Shuilong He

A new tensor transfer approach is proposed for rotating machinery intelligent fault diagnosis with semisupervised partial label learning in this paper. Firstly, the vibration signals are constructed as a three-way tensor via trial, condition, and channel. Secondly, for adapting the source and target domains tensor representations directly, without vectorization, the domain adaptation (DA) approach named tensor-aligned invariant subspace learning (TAISL) is first proposed for tensor representation when testing and training data are drawn from different distribution. Then, semisupervised partial label learning (SSPLL) is first introduced for tackling a problem that it is hard to label a large number of instances and there exists much data left to be unlabeled. Ultimately, the proposed method is used to identify faults. The effectiveness and feasibility of the proposed method has been thoroughly validated by transfer fault experiments. The experimental results show that the presented technique can achieve better performance.


2021 ◽  
Author(s):  
Ishaan Batta ◽  
Anees Abrol ◽  
Zening Fu ◽  
Vince Calhoun

Here we introduce a multimodal framework to identify subspaces in the human brain that are defined by collective changes in structural and functional measures and are actively linked to demographic, biological and cognitive indicators in a population. We determine the multimodal subspaces using principles of active subspace learning (ASL) and demonstrate its application on a sample learning task (biological ageing) on a Schizophrenia dataset. The proposed multimodal ASL method successfully identifies latent brain representations as subsets of brain regions and connections forming co-varying subspaces in association with biological age. We show that Schizophrenia is characterized by different subspace patterns compared to those in a cognitively normal brain. The multimodal features generated by projecting structural and functional MRI components onto these active subspaces perform better than several PCA-based transformations and equally well when compared to non-transformed features on the studied learning task. In essence, the proposed method successfully learns active brain subspaces associated with a specific brain condition but inferred from the brain imaging data along with the biological/cognitive traits of interest.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Qing Liu ◽  
Charles Z. Liu ◽  
Lan-lan Li ◽  
Maria T. Gambino

In this paper, we address the issues of the trade-off between QoS and QoE with an analytical analysis based on mathematical modeling under a unified normalization measurement. We model through computation the awareness of QoS and QoE with a strategy of quality-aware QoE-QoS coordination. A balanced coordination is proposed using modeling correlations between user experience and service performance. The main contributions of this paper include three main parts. First, a comprehensive mapping is modeled in a close form to illustrate the analytic correlations between QoS, QoE, and data communication. Second, an analytical method to analyze and coordinate the nonlinear trade-off between QoE and QoS is proposed based on the theoretical proof with discussions on necessary-sufficient conditions. Third, an algorithmic framework is provided to perform QoE-QoS coordination based on quality-awareness computing with a test proof. An assessment model for user experience quantification is built with the mean opinion score (MOS) test. Quality-aware QoE and QoS models are built based on the subspace learning strategy. Simulations are given to prove the feasibility and effectiveness of the proposed method. The results show that the operations with the proposed solution can be obtained analytically with balanced efficiency in both user experience performance and network performance.


2021 ◽  
Author(s):  
Xiaofeng Liu ◽  
Fangxu Xing ◽  
Hanna K. Gaggin ◽  
Weichung Wang ◽  
C.-C. Jay Kuo ◽  
...  
Keyword(s):  

2021 ◽  
pp. 108386
Author(s):  
Yidan Wang ◽  
Chao Yuan ◽  
Liming Yang

2021 ◽  
Vol 58 (6) ◽  
pp. 102733
Author(s):  
Changan Yuan ◽  
Zhi Zhong ◽  
Cong Lei ◽  
Xiaofeng Zhu ◽  
Rongyao Hu

2021 ◽  
Author(s):  
Guowan Shao ◽  
Chunjiang Peng ◽  
Wenchu Ou ◽  
Kai Duan

Dimensionality reduction plays an important role in the fields of pattern recognition and computer vision. Recursive discriminative subspace learning with an L1-norm distance constraint (RDSL) is proposed to robustly extract features from contaminated data and L1-norm and slack variables are utilized for accomplishing the goal. However, its performance may decline when too many outliers are available. Moreover, the method ignores the global structure of the data. In this paper, we propose cutting L1-norm distance discriminant analysis with sample reconstruction (C-L1-DDA) to solve the two problems. We apply cutting L1-norm to measure within-class and between-class distances and thus outliers may be strongly suppressed. Moreover, we use cutting squared L2-norm to measure reconstruction errors. In this way, outliers may be constrained and the global structure of data may be approximately preserved. Finally, we give an alternating iterative algorithm to extract feature vectors. Experimental results on two publicly available real databases verify the feasibility and effectiveness of the proposed method.


2021 ◽  
Author(s):  
Zhenzhou Jin ◽  
Ning Xu ◽  
Yunhao Shang ◽  
Xiao Yao
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document