ON GENERATION OF WREATH PRODUCTS OF CYCLIC GROUPS BY TWO STATE TIME VARYING MEALY AUTOMATA

2006 ◽  
Vol 16 (02) ◽  
pp. 397-415 ◽  
Author(s):  
ADAM WORYNA

We proof that an infinitely iterated wreath product of finite cyclic groups of pairwise coprime orders is generated as a topological group by two elements a and b. The group G = 〈a, b〉 may be represented by a 2-state time-varying Mealy automaton. We derive some properties of G.

2012 ◽  
Vol 55 (2) ◽  
pp. 390-399 ◽  
Author(s):  
Jeffrey M. Riedl

AbstractWe determine the order of the automorphism group Aut(W) for each member W of an important family of finite p-groups that may be constructed as iterated regular wreath products of cyclic groups. We use a method based on representation theory.


Author(s):  
DMITRY BERDINSKY ◽  
MURRAY ELDER ◽  
JENNIFER TABACK

Abstract We extend work of Berdinsky and Khoussainov [‘Cayley automatic representations of wreath products’, International Journal of Foundations of Computer Science27(2) (2016), 147–159] to show that being Cayley automatic is closed under taking the restricted wreath product with a virtually infinite cyclic group. This adds to the list of known examples of Cayley automatic groups.


Author(s):  
Teresa Scruton

Introduction. In his paper ((1)), Baumslag has shown that the wreath product A wr B of a group A by a group B is nilpotent if and only if A is a nilpotent p-group of finite exponent and B is a finite p-group, the prime p being the same for both groups. Liebeck ((3)) has obtained the exact nilpotency class of A wr B when A and B are Abelian. Let A be an Abelian p -group of exponent pn and let B be a direct product of cyclic groups, whose orders are pβ1, …, pβn, with β1 ≤ β2 ≤ … βn. Then A wr B has nilpotency class .


Author(s):  
J. D. P. Meldrum

1. Introduction. The wreath product A wr B of a group A by a group B is nilpotent if and only if A is a nilpotent p-group of finite exponent and B is a finite p-group for the same prime p (Baumslag (1)). When A is an Abelian p-group of exponent pk, and B is the direct product of cyclic groups of orders pβ1, …, pβn and β1 ≥ β2 ≥ …, ≥ βn, then Liebeck has shown that the nilpotency class c of A wr B is


2007 ◽  
Vol 18 (05) ◽  
pp. 473-481
Author(s):  
BAOHUA FU

We recover the wreath product X ≔ Sym 2(ℂ2/± 1) as a transversal slice to a nilpotent orbit in 𝔰𝔭6. By using deformations of Springer resolutions, we construct a symplectic deformation of symplectic resolutions of X.


2020 ◽  
pp. 1-12 ◽  
Author(s):  
ADRIEN LE BOUDEC

We consider the finitely generated groups acting on a regular tree with almost prescribed local action. We show that these groups embed as cocompact irreducible lattices in some locally compact wreath products. This provides examples of finitely generated simple groups quasi-isometric to a wreath product $C\wr F$ , where $C$ is a finite group and $F$ a non-abelian free group.


2015 ◽  
Vol 26 (01) ◽  
pp. 1550003 ◽  
Author(s):  
Mihaita Berbec

In [M. Berbec and S. Vaes, W*-superrigidity for group von Neumann algebras of left–right wreath products, Proc. London Math. Soc.108 (2014) 1116–1152] we have proven that, for all hyperbolic groups and for all nontrivial free products Γ, the left–right wreath product group 𝒢 ≔ (ℤ/2ℤ)(Γ) ⋊ (Γ × Γ) is W*-superrigid, in the sense that its group von Neumann algebra L𝒢 completely remembers the group 𝒢. In this paper, we extend this result to other classes of countable groups. More precisely, we prove that for weakly amenable groups Γ having positive first ℓ2-Betti number, the same wreath product group 𝒢 is W*-superrigid.


2012 ◽  
Vol 92 (1) ◽  
pp. 127-136 ◽  
Author(s):  
CHERYL E. PRAEGER ◽  
CSABA SCHNEIDER

AbstractWe consider the wreath product of two permutation groups G≤Sym Γ and H≤Sym Δ as a permutation group acting on the set Π of functions from Δ to Γ. Such groups play an important role in the O’Nan–Scott theory of permutation groups and they also arise as automorphism groups of graph products and codes. Let X be a subgroup of Sym Γ≀Sym Δ. Our main result is that, in a suitable conjugate of X, the subgroup of SymΓ induced by a stabiliser of a coordinate δ∈Δ only depends on the orbit of δ under the induced action of X on Δ. Hence, if X is transitive on Δ, then X can be embedded into the wreath product of the permutation group induced by the stabiliser Xδ on Γ and the permutation group induced by X on Δ. We use this result to describe the case where X is intransitive on Δ and offer an application to error-correcting codes in Hamming graphs.


Sign in / Sign up

Export Citation Format

Share Document