scholarly journals EMBEDDING PERMUTATION GROUPS INTO WREATH PRODUCTS IN PRODUCT ACTION

2012 ◽  
Vol 92 (1) ◽  
pp. 127-136 ◽  
Author(s):  
CHERYL E. PRAEGER ◽  
CSABA SCHNEIDER

AbstractWe consider the wreath product of two permutation groups G≤Sym Γ and H≤Sym Δ as a permutation group acting on the set Π of functions from Δ to Γ. Such groups play an important role in the O’Nan–Scott theory of permutation groups and they also arise as automorphism groups of graph products and codes. Let X be a subgroup of Sym Γ≀Sym Δ. Our main result is that, in a suitable conjugate of X, the subgroup of SymΓ induced by a stabiliser of a coordinate δ∈Δ only depends on the orbit of δ under the induced action of X on Δ. Hence, if X is transitive on Δ, then X can be embedded into the wreath product of the permutation group induced by the stabiliser Xδ on Γ and the permutation group induced by X on Δ. We use this result to describe the case where X is intransitive on Δ and offer an application to error-correcting codes in Hamming graphs.

1989 ◽  
Vol 40 (2) ◽  
pp. 255-279 ◽  
Author(s):  
L. G. Kovács

There is a familiar construction with two finite, transitive permutation groups as input and a finite, transitive permutation group, called their wreath product, as output. The corresponding ‘imprimitive wreath decomposition’ concept is the first subject of this paper. A formal definition is adopted and an overview obtained for all such decompositions of any given finite, transitive group. The result may be heuristically expressed as follows, exploiting the associative nature of the construction. Each finite transitive permutation group may be written, essentially uniquely, as the wreath product of a sequence of wreath-indecomposable groups, amid the two-factor wreath decompositions of the group are precisely those which one obtains by bracketing this many-factor decomposition.If both input groups are nontrivial, the output above is always imprimitive. A similar construction gives a primitive output, called the wreath product in product action, provided the first input group is primitive and not regular. The second subject of the paper is the ‘product action wreath decomposition’ concept dual to this. An analogue of the result stated above is established for primitive groups with nonabelian socle.Given a primitive subgroup G with non-regular socle in some symmetric group S, how many subgroups W of S which contain G and have the same socle, are wreath products in product action? The third part of the paper outlines an algorithm which reduces this count to questions about permutation groups whose degrees are very much smaller than that of G.


2004 ◽  
Vol 77 (1) ◽  
pp. 55-72 ◽  
Author(s):  
Robert W. Baddeley ◽  
Cheryl E. Praeger ◽  
Csaba Schneider

AbstractA transitive simple subgroup of a finite symmetric group is very rarely contained in a full wreath product in product action. All such simple permutation groups are determined in this paper. This remarkable conclusion is reached after a definition and detailed examination of ‘Cartesian decompositions’ of the permuted set, relating them to certain ‘Cartesian systems of subgroups’. These concepts, and the bijective connections between them, are explored in greater generality, with specific future applications in mind.


Author(s):  
Mariapia Moscatiello ◽  
Colva M. Roney-Dougal

AbstractLet G be a permutation group, acting on a set $$\varOmega $$ Ω of size n. A subset $${\mathcal {B}}$$ B of $$\varOmega $$ Ω is a base for G if the pointwise stabilizer $$G_{({\mathcal {B}})}$$ G ( B ) is trivial. Let b(G) be the minimal size of a base for G. A subgroup G of $$\mathrm {Sym}(n)$$ Sym ( n ) is large base if there exist integers m and $$r \ge 1$$ r ≥ 1 such that $${{\,\mathrm{Alt}\,}}(m)^r \unlhd G \le {{\,\mathrm{Sym}\,}}(m)\wr {{\,\mathrm{Sym}\,}}(r)$$ Alt ( m ) r ⊴ G ≤ Sym ( m ) ≀ Sym ( r ) , where the action of $${{\,\mathrm{Sym}\,}}(m)$$ Sym ( m ) is on k-element subsets of $$\{1,\dots ,m\}$$ { 1 , ⋯ , m } and the wreath product acts with product action. In this paper we prove that if G is primitive and not large base, then either G is the Mathieu group $$\mathrm {M}_{24}$$ M 24 in its natural action on 24 points, or $$b(G)\le \lceil \log n\rceil +1$$ b ( G ) ≤ ⌈ log n ⌉ + 1 . Furthermore, we show that there are infinitely many primitive groups G that are not large base for which $$b(G) > \log n + 1$$ b ( G ) > log n + 1 , so our bound is optimal.


2001 ◽  
Vol 33 (6) ◽  
pp. 653-661 ◽  
Author(s):  
CAI HENG LI ◽  
CHERYL E. PRAEGER

A construction is given of an infinite family of finite self-complementary, vertex-transitive graphs which are not Cayley graphs. To the authors' knowledge, these are the first known examples of such graphs. The nature of the construction was suggested by a general study of the structure of self-complementary, vertex-transitive graphs. It involves the product action of a wreath product of permutation groups.


10.37236/942 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Eli Bagno ◽  
Ayelet Butman ◽  
David Garber

We define an excedance number for the multi-colored permutation group i.e. the wreath product $({\Bbb Z}_{r_1} \times \cdots \times {\Bbb Z}_{r_k}) \wr S_n$ and calculate its multi-distribution with some natural parameters. We also compute the multi–distribution of the parameters exc$(\pi)$ and fix$(\pi)$ over the sets of involutions in the multi-colored permutation group. Using this, we count the number of involutions in this group having a fixed number of excedances and absolute fixed points.


Author(s):  
Mariusz Grech ◽  
Andrzej Kisielewicz

AbstractIn this paper we characterize those automorphism groups of colored graphs and digraphs that are abelian as abstract groups. This is done in terms of basic permutation group properties. Using Schur’s classical terminology, what we provide is characterizations of the classes of 2-closed and $$2^*$$ 2 ∗ -closed abelian permutation groups. This is the first characterization concerning these classes since they were defined.


Author(s):  
Cheryl E. Praeger ◽  
C. A. Rowley ◽  
T. P. Speed

AbstractGeneralised wreath products of permutation groups were discussed in a paper by Bailey and us. This note determines the orbits of the action of a generalised wreath product group on m–tuples (m ≥ 2) of elements of the product of the base sets on the assumption that the action on each component is m–transitive. Certain related results are also provided.


2019 ◽  
Vol 35 (6) ◽  
pp. 1405-1432 ◽  
Author(s):  
Mariusz Grech ◽  
Andrzej Kisielewicz

Abstract In this paper we establish conditions for a permutation group generated by a single permutation to be an automorphism group of a graph. This solves the so called concrete version of König’s problem for the case of cyclic groups. We establish also similar conditions for the symmetry groups of other related structures: digraphs, supergraphs, and boolean functions.


10.37236/8071 ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Matteo Cavaleri ◽  
Alfredo Donno ◽  
Andrea Scozzari

In the last decades much attention has turned towards centrality measures on graphs. The Wiener index and the total distance are key tools to investigate the median vertices, the distance-balanced property and the opportunity index of a graph. This interest has recently been addressed to graphs obtained via classical graph products like the Cartesian, the direct, the strong and the lexicographic product. We extend this study to a relatively new graph product, that is, the wreath product. In this paper, we compute the total distance for the vertices of an arbitrary wreath product graph $G\wr H$ in terms of the total distances in $H$ and of some distance-based indices of $G$. We explicitly compute these indices for the star graph $S_n$, providing a closed formula for the total distances in $S_n\wr H$ when $H$ is complete or a star. As a consequence, we obtain the Wiener index of these graphs, we characterize the median and the central vertices, and finally we give an upper and a lower bound for the opportunity index of $S_n\wr S_m$ in terms of tail conditional expectations of an associated binomial distribution.


Sign in / Sign up

Export Citation Format

Share Document