ON THE CLASSIFICATION OF GROUPS OF PRIME-POWER ORDER BY COCLASS: THE 3-GROUPS OF COCLASS 2

2013 ◽  
Vol 23 (05) ◽  
pp. 1243-1288 ◽  
Author(s):  
BETTINA EICK ◽  
C. R. LEEDHAM-GREEN ◽  
M. F. NEWMAN ◽  
E. A. O'BRIEN

In this paper we take a significant step forward in the classification of 3-groups of coclass 2. Several new phenomena arise. Theoretical and computational tools have been developed to deal with them. We identify and are able to classify an important subset of the 3-groups of coclass 2. With this classification and further extensive computations, it is possible to predict the full classification. On the basis of the work here and earlier work on the p-groups of coclass 1, we formulate another general coclass conjecture. It implies that, given a prime p and a positive integer r, a finite computation suffices to determine the p-groups of coclass r.

2005 ◽  
Vol 78 (2) ◽  
pp. 291-295 ◽  
Author(s):  
László Héthelyi ◽  
Burkhard Külshammer

AbstractWe show that, for any positive integer k, there are only finitely many finite groups, up to isomorphism, with exactly k conjugacy classes of elements of prime power order. This generalizes a result of E. Landau from 1903. The proof of our generalization makes use of the classification of finite simple groups.


Author(s):  
Juan Martínez ◽  
Alexander Moretó

In 2014, Baumslag and Wiegold proved that a finite group G is nilpotent if and only if o(xy) = o(x)o(y) for every x, y ∈ G with (o(x), o(y)) = 1. This has led to a number of results that characterize the nilpotence of a group (or the existence of nilpotent Hall subgroups, or the existence of normal Hall subgroups) in terms of prime divisors of element orders. Here, we look at these results with a new twist. The first of our main results asserts that G is nilpotent if and only if o(xy) ⩽ o(x)o(y) for every x, y ∈ G of prime power order with (o(x), o(y)) = 1. As an immediate consequence, we recover the Baumslag–Wiegold theorem. The proof of this result is elementary. We prove some variations of this result that depend on the classification of finite simple groups.


1992 ◽  
Vol 59 (6) ◽  
pp. 521-524 ◽  
Author(s):  
Joseph A. Gallian ◽  
David Moulton

2013 ◽  
Vol 20 (03) ◽  
pp. 457-462 ◽  
Author(s):  
Jiangtao Shi ◽  
Cui Zhang ◽  
Dengfeng Liang

Let [Formula: see text] be the class of groups of non-prime-power order or the class of groups of prime-power order. In this paper we give a complete classification of finite non-solvable groups with a quite small number of conjugacy classes of [Formula: see text]-subgroups or classes of [Formula: see text]-subgroups of the same order.


1977 ◽  
Vol 17 (2) ◽  
pp. 317-319
Author(s):  
Judith A. Ascione ◽  
George Havas ◽  
C.R. Leedham-Green

The first four paragraphs of [1, p. 258] are a mildly erroneous over simplification of the situation. A more accurate description follows.The analysis of two-generator 3-groups of second maximal class goes along the following lines. We first define a class of group whose structure is particularly amenable to theoretical analysis.


1977 ◽  
Vol 17 (2) ◽  
pp. 257-274 ◽  
Author(s):  
Judith A. Ascione ◽  
George Havas ◽  
C. R. Leedham-Green

A classification of two-generator 3-groups of second maximal class and low order is presented. All such groups with orders up to 38 are described, and in some cases with orders up to 310. The classification is based on computer aided computations. A description of the computations and their results are presented, together with an indication of their significance.


2019 ◽  
Vol 149 (5) ◽  
pp. 1153-1162
Author(s):  
Alexander Moretó ◽  
Azahara Sáez

AbstractBaumslag and Wiegold have recently proven that a finite group G is nilpotent if and only if o(xy) = o(x)o(y) for every x, y ∈ G with (o(x), o(y)) = 1. Motivated by this surprisingly new result, we have obtained related results that just consider sets of prime divisors of element orders. For instance, the first of our main results asserts that G is nilpotent if and only if π(o(xy)) = π(o(x)o(y)) for every x, y ∈ G of prime power order with (o(x), o(y)) = 1. As an immediate consequence, we recover the Baumslag–Wiegold Theorem. While this result is still elementary, we also obtain local versions that, for instance, characterize the existence of a normal Sylow p-subgroup in terms of sets of prime divisors of element orders. These results are deeper and our proofs rely on results that depend on the classification of finite simple groups.


2020 ◽  
Vol 23 (4) ◽  
pp. 641-658
Author(s):  
Gunnar Traustason ◽  
James Williams

AbstractIn this paper, we continue the study of powerfully nilpotent groups. These are powerful p-groups possessing a central series of a special kind. To each such group, one can attach a powerful nilpotency class that leads naturally to the notion of a powerful coclass and classification in terms of an ancestry tree. In this paper, we will give a full classification of powerfully nilpotent groups of rank 2. The classification will then be used to arrive at a precise formula for the number of powerfully nilpotent groups of rank 2 and order {p^{n}}. We will also give a detailed analysis of the ancestry tree for these groups. The second part of the paper is then devoted to a full classification of powerfully nilpotent groups of order up to {p^{6}}.


Sign in / Sign up

Export Citation Format

Share Document