scholarly journals On the cyclic subgroup separability of the free product of two groups with commuting subgroups

2014 ◽  
Vol 24 (05) ◽  
pp. 741-756 ◽  
Author(s):  
E. V. Sokolov

Let G be the free product of groups A and B with commuting subgroups H ≤ A and K ≤ B, and let 𝒞 be the class of all finite groups or the class of all finite p-groups. We derive the description of all 𝒞-separable cyclic subgroups of G provided this group is residually a 𝒞-group. We prove, in particular, that if A, B are finitely generated nilpotent groups and H, K are p′-isolated in the free factors, then all p′-isolated cyclic subgroups of G are separable in the class of all finite p-groups. The same statement is true provided A, B are free and H, K are p′-isolated and cyclic.


1993 ◽  
Vol 36 (3) ◽  
pp. 296-302 ◽  
Author(s):  
Goansu Kim

AbstractWe derive a criterion for a generalized free product of groups to be cyclic subgroup separable. We see that most of the known results for cyclic subgroup separability are covered by this criterion, and we apply the criterion to polygonal products of groups. We show that a polygonal product of finitely generated abelian groups, amalgamating cyclic subgroups, is cyclic subgroup separable.



2008 ◽  
Vol 18 (04) ◽  
pp. 683-704 ◽  
Author(s):  
IVA KOZÁKOVÁ

In this article we study percolation on the Cayley graph of a free product of groups. The critical probability pc of a free product G1 * G2 * ⋯ * Gn of groups is found as a solution of an equation involving only the expected subcritical cluster size of factor groups G1, G2, …, Gn. For finite groups this equation is polynomial and can be explicitly written down. The expected subcritical cluster size of the free product is also found in terms of the subcritical cluster sizes of the factors. In particular, we prove that pc for the Cayley graph of the modular group PSL2(ℤ) (with the standard generators) is 0.5199…, the unique root of the polynomial 2p5 - 6p4 + 2p3 + 4p2 - 1 in the interval (0, 1). In the case when groups Gi can be "well approximated" by a sequence of quotient groups, we show that the critical probabilities of the free product of these approximations converge to the critical probability of G1 * G2 * ⋯ * Gn and the speed of convergence is exponential. Thus for residually finite groups, for example, one can restrict oneself to the case when each free factor is finite. We show that the critical point, introduced by Schonmann, p exp of the free product is just the minimum of p exp for the factors.



1993 ◽  
Vol 36 (4) ◽  
pp. 385-389 ◽  
Author(s):  
R. B. J. T. Allenby ◽  
C. Y. Tang

AbstractWe prove that generalized free products of finitely generated free-byfinite groups amalgamating a cyclic subgroup are subgroup separable. From this it follows that if where t ≥ 1 and u, v are words on {a1,...,am} and {b1,...,bn} respectively then G is subgroup separable thus generalizing a result in [9] that such groups have solvable word problems.



1981 ◽  
Vol 46 (3) ◽  
pp. 499-512 ◽  
Author(s):  
Pat Rogers

This paper is a contribution to the growing literature on the model theory of nilpotent groups. (See Baumslag and Levin [2]; Eršov [5]; Hodges [9], [10]; Mal′cev [14]; Olin [16] and Saracino [19], [20].) In it we investigate the conditions under which the free product in the variety of all nilpotent of class 2 (nil-2) groups preserves saturation and stability.It is well known that the direct product preserves both saturation (see Waszkiewicz and Wȩglorz [23]) and stability (see Wierzejewski [24]; Macintyre [13]; Eklof and Fisher [4]). On the other hand it is easy to show that the full free product of groups preserves neither property; indeed, in the case of saturation this failure is extremely bad since no free product of nontrivial groups is even 2-saturated. Our results show that the nil-2 free product falls between these two extremes.Our proofs are mainly model-theoretic with a smattering of elementary algebra and rely heavily upon the unique normal form for the elements of a nil-2 free product given by MacHenry in [12]. (This normal form and some of its consequences are discussed in §1.) We assume familiarity with the basic ideas of saturation (see Chapter 5 of [3]) and Shelah's treatment of stability in [22].We prove two main theorems in §3 each giving a necessary and sufficient condition in separate situations for the preservation of saturation. In the first (Theorem 3.1) we allow one finite factor, while in the second (Theorem 3.10) we deal solely with torsion groups. Our motivation for the proof of sufficiency was the paper of Waszkiewicz and Wȩglorz [23] and the principal tool is a “Feferman-Vaught” Theorem for the nil-2 free product which we prove in §2. We also show that if both factors in a nil-2 free product are nontorsion and one factor has a nil-2 basis, then the group is not even 3-saturated. We leave open the case where both factors are infinite but only one is torsion.





1992 ◽  
Vol 35 (3) ◽  
pp. 390-399 ◽  
Author(s):  
Goansu Kim ◽  
C. Y. Tang

AbstractIn general polygonal products of finitely generated torsion-free nilpotent groups amalgamating cyclic subgroups need not be residually finite. In this paper we prove that polygonal products of finitely generated torsion-free nilpotent groups amalgamating maximal cyclic subgroups such that the amalgamated cycles generate an isolated subgroup in the vertex group containing them, are residually finite. We also prove that, for finitely generated torsion-free nilpotent groups, if the subgroups generated by the amalgamated cycles have the same nilpotency classes as their respective vertex groups, then their polygonal product is residually finite.



1996 ◽  
Vol 39 (3) ◽  
pp. 294-307 ◽  
Author(s):  
Goansu Kim

AbstractWe show that polygonal products of polycyclic-by-finite groups amalgamating central cyclic subgroups, with trivial intersections, are conjugacy separable. Thus polygonal products of finitely generated abelian groups amalgamating cyclic subgroups, with trivial intersections, are conjugacy separable. As a corollary of this, we obtain that the group A1 *〈a1〉A2 *〈a2〉 • • • *〈am-1〉Am is conjugacy separable for the abelian groups Ai.



2019 ◽  
Vol 19 (04) ◽  
pp. 2050062 ◽  
Author(s):  
Samir Zahirović ◽  
Ivica Bošnjak ◽  
Rozália Madarász

The enhanced power graph [Formula: see text] of a group [Formula: see text] is the graph with vertex set [Formula: see text] such that two vertices [Formula: see text] and [Formula: see text] are adjacent if they are contained in the same cyclic subgroup. We prove that finite groups with isomorphic enhanced power graphs have isomorphic directed power graphs. We show that any isomorphism between undirected power graph of finite groups is an isomorphism between enhanced power graphs of these groups, and we find all finite groups [Formula: see text] for which [Formula: see text] is abelian, all finite groups [Formula: see text] with [Formula: see text] being prime power, and all finite groups [Formula: see text] with [Formula: see text] being square-free. Also, we describe enhanced power graphs of finite abelian groups. Finally, we give a characterization of finite nilpotent groups whose enhanced power graphs are perfect, and we present a sufficient condition for a finite group to have weakly perfect enhanced power graph.



2018 ◽  
Vol 506 ◽  
pp. 489-508 ◽  
Author(s):  
Jonas Deré ◽  
Mark Pengitore


Sign in / Sign up

Export Citation Format

Share Document