Nuclear matrix elements for neutrinoless double-beta decay in covariant density functional theory

2017 ◽  
Vol 26 (01n02) ◽  
pp. 1740020 ◽  
Author(s):  
J. Meng ◽  
L. S. Song ◽  
J. M. Yao

We review the first fully relativistic description for the neutrinoless double-beta decay by the beyond-mean-field covariant density functional theory. The calculations of the nuclear transition matrix elements are based on a full relativistic transition operator and nuclear wave functions in which the dynamic effects of particle-number, angular-momentum, and parity conservations as well as shape fluctuations are incorporated. We find that the commonly used nonrelativistic approximation for the transition operator is justified within the mechanism of light-Majorana-neutrino exchange. We stress that reducing the discrepancies in the predicted nuclear matrix elements by different nuclear models is a major challenge in nuclear physics.

2013 ◽  
Vol T154 ◽  
pp. 014010 ◽  
Author(s):  
J Meng ◽  
Y Chen ◽  
H Z Liang ◽  
Y F Niu ◽  
Z M Niu ◽  
...  

2019 ◽  
Vol 223 ◽  
pp. 01057
Author(s):  
Shahariar Sarkar ◽  
Pawan Kumar ◽  
Kanhaiya Jha ◽  
P.K. Raina

We examine the sensitivity of nuclear matrix elements (NMEs) for light-neutrino exchange mechanism of neutrinoless double beta decay (0νββ) for 48Ca to the various components of two-nucleon interaction, GXPF1A, in fp model space. It is found that the contribution in NMEs coming from the central component is close to contribution from total interaction. The spin-orbit and tensor components are found canceling the contribution of each other.


Sign in / Sign up

Export Citation Format

Share Document