DIRECT AND LOCAL DEFINITIONS OF THE TURING JUMP

2007 ◽  
Vol 07 (02) ◽  
pp. 229-262 ◽  
Author(s):  
RICHARD A. SHORE

We show that there are Π5 formulas in the language of the Turing degrees, [Formula: see text], with ≤, ∨ and ∧, that define the relations x″ ≤ y″, x″ = y″ and so {x ∈ L2(y) = x ≥ y|x″ = y″} in any jump ideal containing 0(ω). There are also Σ6&Π6 and Π8 formulas that define the relations w = x″ and w = x', respectively, in any such ideal [Formula: see text]. In the language with just ≤ the quantifier complexity of each of these definitions increases by one. For a lower bound on definability, we show that no Π2 or Σ2 formula in the language with just ≤ defines L2 or L2(y). Our arguments and constructions are purely degree theoretic without any appeals to absoluteness considerations, set theoretic methods or coding of models of arithmetic. As a corollary, we see that every automorphism of [Formula: see text] is fixed on every degree above 0″ and every relation on [Formula: see text] which is invariant under the double jump or under join with 0″ is definable over [Formula: see text] if and only if it is definable in second order arithmetic with set quantification ranging over sets whose degrees are in [Formula: see text].

2007 ◽  
Vol 13 (2) ◽  
pp. 226-239 ◽  
Author(s):  
Richard A. Shore

AbstractThere are Π5 formulas in the language of the Turing degrees, D, with ≤, ⋁ and ⋀, that define the relations x″ ≤ y″, x″ = y″ and so x ∈ L2(y) = {x ≥ y ∣ x″ = y″} in any jump ideal containing 0(ω). There are also Σ6 & Π6 and Π8 formulas that define the relations w = x″ and w = x′, respectively, in any such ideal I. In the language with just ≤ the quantifier complexity of each of these definitions increases by one. On the other hand, no Π2 or Σ2 formula in the language with just ≤ defines L2 or x ∈ L2(y). Our arguments and constructions are purely degree theoretic without any appeals to absoluteness considerations, set theoretic methods or coding of models of arithmetic. As a corollary, we see that every automorphism of I is fixed on every degree above 0″ and every relation on I that is invariant under double jump or joining with 0″ is definable over I if and only if it is definable in second order arithmetic with set quantification ranging over sets whose degrees are in I. Similar direct coding arguments show that every hyperjump ideal I is rigid and biinterpretable with second order arithmetic with set quantification ranging over sets with hyperdegrees in I. Analogous results hold for various coarser degree structures.


Author(s):  
Gerhard Jäger

AbstractThis short note is on the question whether the intersection of all fixed points of a positive arithmetic operator and the intersection of all its closed points can proved to be equivalent in a weak fragment of second order arithmetic.


2014 ◽  
Vol 79 (4) ◽  
pp. 1001-1019 ◽  
Author(s):  
ASHER M. KACH ◽  
ANTONIO MONTALBÁN

AbstractMany classes of structures have natural functions and relations on them: concatenation of linear orders, direct product of groups, disjoint union of equivalence structures, and so on. Here, we study the (un)decidability of the theory of several natural classes of structures with appropriate functions and relations. For some of these classes of structures, the resulting theory is decidable; for some of these classes of structures, the resulting theory is bi-interpretable with second-order arithmetic.


1993 ◽  
Vol 62 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Harvey Friedman ◽  
Stephen G. Simpson ◽  
Xiaokang Yu

2010 ◽  
Vol 16 (3) ◽  
pp. 378-402 ◽  
Author(s):  
Richard A. Shore

AbstractThis paper is essentially the author's Gödel Lecture at the ASL Logic Colloquium '09 in Sofia extended and supplemented by material from some other papers. After a brief description of traditional reverse mathematics, a computational approach to is presented. There are then discussions of some interactions between reverse mathematics and the major branches of mathematical logic in terms of the techniques they supply as well as theorems for analysis. The emphasis here is on ones that lie outside the usual main systems of reverse mathematics. While retaining the usual base theory and working still within second order arithmetic, theorems are described that range from those far below the usual systems to ones far above.


Sign in / Sign up

Export Citation Format

Share Document