comprehension axiom
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

2020 ◽  
Author(s):  
Vasil Dinev Penchev

The link between the high-order metaphysics and abstractions, on the one hand, and choice in the foundation of set theory, on the other hand, can distinguish unambiguously the “good” principles of abstraction from the “bad” ones and thus resolve the “bad company problem” as to set theory. Thus it implies correspondingly a more precise definition of the relation between the axiom of choice and “all company” of axioms in set theory concerning directly or indirectly abstraction: the principle of abstraction, axiom of comprehension, axiom scheme of specification, axiom scheme of separation, subset axiom scheme, axiom scheme of replacement, axiom of unrestricted comprehension, axiom of extensionality, etc.



2019 ◽  
pp. 109-129
Author(s):  
John Stillwell

This chapter focuses on arithmetical comprehension. Arithmetical comprehension is the most obvious set existence axiom to use when developing analysis in a system based on Peano arithmetic (PA) with set variables. This axiom asserts the existence of a set X of natural numbers for each property φ‎ definable in the language of PA. More precisely, if φ‎(n) is a property defined in the language of PA plus set variables, but with no set quantifiers, then there is a set X whose members are the natural numbers n such that φ‎(n). Since all such formulas φ‎ are asserted for, the arithmetical comprehension axiom is really an axiom schema. The reason set variables are allowed in φ‎ is to enable sets to be defined in terms of “given” sets. The reason set quantifiers are disallowed in φ‎ is to avoid definitions in which a set is defined in terms of all sets of natural numbers (and hence in terms of itself). The system consisting of PA plus arithmetical comprehension is called ACA0. This system lies at a remarkable “sweet spot” among axiom systems for analysis.



2018 ◽  
Vol 83 (3) ◽  
pp. 1091-1111 ◽  
Author(s):  
TOSHIYASU ARAI

AbstractIn this article the lightface ${\rm{\Pi }}_1^1$-Comprehension axiom is shown to be proof-theoretically strong even over ${\rm{RCA}}_0^{\rm{*}}$, and we calibrate the proof-theoretic ordinals of weak fragments of the theory ${\rm{I}}{{\rm{D}}_1}$ of positive inductive definitions over natural numbers. Conjunctions of negative and positive formulas in the transfinite induction axiom of ${\rm{I}}{{\rm{D}}_1}$ are shown to be weak, and disjunctions are strong. Thus we draw a boundary line between predicatively reducible and impredicative fragments of ${\rm{I}}{{\rm{D}}_1}$.



2018 ◽  
Vol 15 (2) ◽  
pp. 139
Author(s):  
John Wigglesworth

This paper describes a modal conception of sets, according to which sets are 'potential' with respect to their members.  A modal theory is developed, which invokes a naive comprehension axiom schema, modified by adding `forward looking' and `backward looking' modal operators.  We show that this `bi-modal' naive set theory can prove modalized interpretations of several ZFC axioms, including the axiom of infinity.  We also show that the theory is consistent by providing an S5 Kripke model.  The paper concludes with some discussion of the nature of the modalities involved, drawing comparisons with noneism, the view that there are some non-existent objects.



2016 ◽  
Vol 81 (4) ◽  
pp. 1481-1499 ◽  
Author(s):  
LUDOVIC PATEY

AbstractNo natural principle is currently known to be strictly between the arithmetic comprehension axiom (ACA0) and Ramsey’s theorem for pairs ($RT_2^2$) in reverse mathematics. The tree theorem for pairs ($TT_2^2$) is however a good candidate. The tree theorem states that for every finite coloring over tuples of comparable nodes in the full binary tree, there is a monochromatic subtree isomorphic to the full tree. The principle $TT_2^2$ is known to lie between ACA0 and $RT_2^2$ over RCA0, but its exact strength remains open. In this paper, we prove that $RT_2^2$ together with weak König’s lemma (WKL0) does not imply $TT_2^2$, thereby answering a question of Montálban. This separation is a case in point of the method of Lerman, Solomon and Towsner for designing a computability-theoretic property which discriminates between two statements in reverse mathematics. We therefore put the emphasis on the different steps leading to this separation in order to serve as a tutorial for separating principles in reverse mathematics.



2015 ◽  
Vol 80 (3) ◽  
pp. 1035-1065 ◽  
Author(s):  
FARIDA KACHAPOVA

AbstractIn this paper we describe an intuitionistic theory SLP. It is a relatively strong theory containing intuitionistic principles for functionals of many types, in particular, the theory of the “creating subject”, axioms for lawless functionals and some versions of choice axioms. We construct a Beth model for the language of intuitionistic functionals of high types and use it to prove the consistency of SLP.We also prove that the intuitionistic theory SLP is equiconsistent with a classical theory TI. TI is a typed set theory, where the comprehension axiom for sets of type n is restricted to formulas with no parameters of types > n. We show that each fragment of SLP with types ≤ s is equiconsistent with the corresponding fragment of TI and that it is stronger than the previous fragment of SLP. Thus, both SLP and TI are much stronger than the second order arithmetic. By constructing the intuitionistic theory SLP and interpreting in it the classical set theoryTI, we contribute to the program of justifying classical mathematics from the intuitionistic point of view.



2013 ◽  
Vol 78 (3) ◽  
pp. 824-836 ◽  
Author(s):  
Wei Wang

AbstractWe prove that RCA0 + RRT ⊬ ACA0 where RRT is the Rainbow Ramsey Theorem for 2-bounded colorings of triples. This reverse mathematical result is based on a cone avoidance theorem, that every 2-bounded coloring of pairs admits a cone-avoiding infinite rainbow, regardless of the complexity of the given coloring. We also apply the proof of the cone avoidance theorem to the question whether RCA0 + RRT ⊦ ACA0 and obtain some partial answer.



1999 ◽  
Vol 66 (5) ◽  
pp. 533-540
Author(s):  
V. N. Grishin
Keyword(s):  


1995 ◽  
Vol 60 (1) ◽  
pp. 103-121 ◽  
Author(s):  
Aleksandar Ignjatović

AbstractIn this paper we characterize the well-known computational complexity classes of the polynomial time hierarchy as classes of provably recursive functions (with graphs of suitable bounded complexity) of some second order theories with weak comprehension axiom schemas but without any induction schemas (Theorem 6). We also find a natural relationship between our theories and the theories of bounded arithmetic (Lemmas 4 and 5). Our proofs use a technique which enables us to “speed up” induction without increasing the bounded complexity of the induction formulas. This technique is also used to obtain an interpretability result for the theories of bounded arithmetic (Theorem 4).



1986 ◽  
Vol 51 (2) ◽  
pp. 393-411 ◽  
Author(s):  
Paul C. Gilmore

AbstractThe comprehension principle of set theory asserts that a set can be formed from the objects satisfying any given property. The principle leads to immediate contradictions if it is formalized as an axiom scheme within classical first order logic. A resolution of the set paradoxes results if the principle is formalized instead as two rules of deduction in a natural deduction presentation of logic. This presentation of the comprehension principle for sets as semantic rules, instead of as a comprehension axiom scheme, can be viewed as an extension of classical logic, in contrast to the assertion of extra-logical axioms expressing truths about a pre-existing or constructed universe of sets. The paradoxes are disarmed in the extended classical semantics because truth values are only assigned to those sentences that can be grounded in atomic sentences.



Sign in / Sign up

Export Citation Format

Share Document