MODULI SPACES OF STABLE BUNDLES ON K3 FIBERED CALABI–YAU THREEFOLDS

2003 ◽  
Vol 05 (01) ◽  
pp. 119-126 ◽  
Author(s):  
TOHRU NAKASHIMA

In this paper we study stable rank two bundles on a Calabi–Yau threefold. For hypersurfaces in a ℙ3-bundle over ℙ1, we show that their moduli spaces have irreducible components which are birational to projective spaces.

2018 ◽  
Vol 2020 (2) ◽  
pp. 403-421 ◽  
Author(s):  
Andrew T Carroll ◽  
Calin Chindris ◽  
Ryan Kinser ◽  
Jerzy Weyman

Abstract We show that the irreducible components of any moduli space of semistable representations of a special biserial algebra are always isomorphic to products of projective spaces of various dimensions. This is done by showing that irreducible components of varieties of representations of special biserial algebras are isomorphic to irreducible components of products of varieties of circular complexes and therefore normal, allowing us to apply recent results of the second and third authors on moduli spaces.


1998 ◽  
Vol 150 ◽  
pp. 85-94 ◽  
Author(s):  
Hoil Kim

Abstract.We show that the image of the moduli space of stable bundles on an Enriques surface by the pull back map is a Lagrangian subvariety in the moduli space of stable bundles, which is a symplectic variety, on the covering K3 surface. We also describe singularities and some other features of it.


2003 ◽  
Vol 55 (4) ◽  
pp. 766-821 ◽  
Author(s):  
Thomas Kerler

AbstractWe develop an explicit skein-theoretical algorithm to compute the Alexander polynomial of a 3-manifold from a surgery presentation employing the methods used in the construction of quantum invariants of 3-manifolds. As a prerequisite we establish and prove a rather unexpected equivalence between the topological quantum field theory constructed by Frohman and Nicas using the homology ofU(1)-representation varieties on the one side and the combinatorially constructed Hennings TQFT based on the quasitriangular Hopf algebra= ℤ/2 n ⋊ Λ* ℝ2on the other side. We find that both TQFT's are SL(2; ℝ)-equivariant functors and, as such, are isomorphic. The SL(2; ℝ)-action in the Hennings construction comes from the natural action onand in the case of the Frohman–Nicas theory from the Hard–Lefschetz decomposition of theU(1)-moduli spaces given that they are naturally Kähler. The irreducible components of this TQFT, corresponding to simple representations of SL(2; ℤ) and Sp(2g; ℤ), thus yield a large family of homological TQFT's by taking sums and products. We give several examples of TQFT's and invariants that appear to fit into this family, such as Milnor and Reidemeister Torsion, Seiberg–Witten theories, Casson type theories for homology circlesà laDonaldson, higher rank gauge theories following Frohman and Nicas, and the ℤ=pℤ reductions of Reshetikhin.Turaev theories over the cyclotomic integers ℤ[ζp]. We also conjecture that the Hennings TQFT for quantum-sl2is the product of the Reshetikhin–Turaev TQFT and such a homological TQFT.


2003 ◽  
Vol 14 (10) ◽  
pp. 1097-1120 ◽  
Author(s):  
WEI-PING LI ◽  
ZHENBO QIN

In this paper, we apply the technique of chamber structures of stability polarizations to construct the full moduli space of rank-2 stable sheaves with certain Chern classes on Calabi–Yau manifolds which are anti-canonical divisor of ℙ1×ℙn or a double cover of ℙ1×ℙn. These moduli spaces are isomorphic to projective spaces. As an application, we compute the holomorphic Casson invariants defined by Donaldson and Thomas.


1997 ◽  
Vol 62 (6) ◽  
pp. 707-725 ◽  
Author(s):  
S. A. Kuleshov
Keyword(s):  

1980 ◽  
Vol 249 (3) ◽  
pp. 281-282 ◽  
Author(s):  
P. E. Newstead
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document