Commutative nil clean group rings

2015 ◽  
Vol 14 (06) ◽  
pp. 1550094 ◽  
Author(s):  
Warren Wm. McGovern ◽  
Shan Raja ◽  
Alden Sharp

In [A. J. Diesl, Classes of strongly clean rings, Ph.D. Dissertation, University of California, Berkely (2006); Nil clean rings, J. Algebra383 (2013) 197–211], a nil clean ring was defined as a ring for which every element is the sum of a nilpotent and an idempotent. In this short paper, we characterize nil clean commutative group rings.

2016 ◽  
Vol 15 (08) ◽  
pp. 1650148 ◽  
Author(s):  
Simion Breaz ◽  
Peter Danchev ◽  
Yiqiang Zhou

Generalizing the notion of nil-cleanness from [A. J. Diesl, Nil clean rings, J. Algebra 383 (2013) 197–211], in parallel to [P. V. Danchev and W. Wm. McGovern, Commutative weakly nil clean unital rings, J. Algebra 425 (2015) 410–422], we define the concept of weak nil-cleanness for an arbitrary ring. Its comprehensive study in different ways is provided as well. A decomposition theorem of a weakly nil-clean ring is obtained. It is completely characterized when an abelian ring is weakly nil-clean. It is also completely determined when a matrix ring over a division ring is weakly nil-clean.


2017 ◽  
Vol 16 (04) ◽  
pp. 1750073 ◽  
Author(s):  
Jerzy Matczuk

Question 3 of [3] asks whether the matrix ring [Formula: see text] is nil clean, for any nil clean ring [Formula: see text]. It is shown that, positive answer to this question is equivalent to positive solution for Köthe’s problem in the class of algebras over the field [Formula: see text]. Other equivalent problems are also discussed. The classes of conjugate clean and conjugate nil clean rings, which lie strictly between uniquely (nil) clean and (nil) clean rings are introduced and investigated.


2013 ◽  
Vol 96 (2) ◽  
pp. 258-274
Author(s):  
V. A. HIREMATH ◽  
SHARAD HEGDE

AbstractIn this article, we introduce the notion of the uniquely $I$-clean ring and show that, if $R$ is a ring and $I$ is an ideal of $R$ then $R$ is uniquely $I$-clean if and only if ($R/ I$ is Boolean and idempotents lift uniquely modulo $I$) if and only if (for each $a\in R$ there exists a central idempotent $e\in R$ such that $e- a\in I$ and $I$ is idempotent-free). We examine when ideal extension is uniquely clean relative to an ideal. Also we obtain conditions on a ring $R$ and an ideal $I$ of $R$ under which uniquely $I$-clean rings coincide with uniquely clean rings. Further we prove that a ring $R$ is uniquely nil-clean if and only if ($N(R)$ is an ideal of $R$ and $R$ is uniquely $N(R)$-clean) if and only if $R$ is both uniquely clean and nil-clean if and only if ($R$ is an abelian exchange ring with $J(R)$ nil and every quasiregular element is uniquely clean). We also show that $R$ is a uniquely clean ring such that every prime ideal of $R$ is maximal if and only if $R$ is uniquely nil-clean ring and $N(R)= {\mathrm{Nil} }_{\ast } (R)$.


2016 ◽  
Vol 15 (10) ◽  
pp. 1620001 ◽  
Author(s):  
Alin Stancu

In this paper we discuss some properties of abelian (weakly) nil clean rings. We prove that any subring of an abelian (weakly) nil clean ring is (weakly) nil clean (Theorem 2). We also show that the tensor product of commutative (weakly) nil clean rings is also (weakly) nil clean and give sufficient conditions for the converse to be true (Theorems 3–6).


2016 ◽  
Vol 16 (07) ◽  
pp. 1750135 ◽  
Author(s):  
Serap Sahinkaya ◽  
Gaohua Tang ◽  
Yiqiang Zhou

An element [Formula: see text] of a ring [Formula: see text] is nil-clean, if [Formula: see text], where [Formula: see text] and [Formula: see text] is a nilpotent element, and the ring [Formula: see text] is called nil-clean if each of its elements is nil-clean. In [W. Wm. McGovern, S. Raja and A. Sharp, Commutative nil clean group rings, J. Algebra Appl. 14(6) (2015) 5; Article ID: 1550094], it was proved that, for a commutative ring [Formula: see text] and an abelian group [Formula: see text], the group ring [Formula: see text] is nil-clean, iff [Formula: see text] is nil-clean and [Formula: see text] is a [Formula: see text]-group. Here, we discuss the nil-cleanness of group rings in general situation. We prove that the group ring of a locally finite [Formula: see text]-group over a nil-clean ring is nil-clean, and that the hypercenter of the group [Formula: see text] must be a [Formula: see text]-group if a group ring of [Formula: see text] is nil-clean. Consequently, the group ring of a nilpotent group over an arbitrary ring is nil-clean, iff the ring is a nil-clean ring and the group is a [Formula: see text]-group.


2015 ◽  
Vol 22 (01) ◽  
pp. 169-180 ◽  
Author(s):  
Yanyan Gao ◽  
Jianlong Chen ◽  
Yuanlin Li

A ring with involution ∗ is called ∗-clean if each of its elements is the sum of a unit and a projection. It is obvious that ∗-clean rings are clean. Vaš asked whether there exists a clean ring with involution that is not ∗-clean. In this paper, we investigate when a group ring RG is ∗-clean, where ∗ is the classical involution on RG. We obtain necessary and sufficient conditions for RG to be ∗-clean, where R is a commutative local ring and G is one of the groups C3, C4, S3 and Q8. As a consequence, we provide many examples of group rings which are clean but not ∗-clean.


1982 ◽  
Vol 38 (1) ◽  
pp. 420-422 ◽  
Author(s):  
G. Karpilovsky

2018 ◽  
Vol 17 (03) ◽  
pp. 1850042 ◽  
Author(s):  
Marjan Sheibani Abdolyousefi ◽  
Huanyin Chen
Keyword(s):  

A ring [Formula: see text] is strongly 2-nil-clean if every element in [Formula: see text] is the sum of a tripotent and a nilpotent that commute. We prove that a ring [Formula: see text] is strongly 2-nil-clean if and only if [Formula: see text] is a strongly feebly clean 2-UU ring if and only if [Formula: see text] is an exchange 2-UU ring. Furthermore, we characterize strongly 2-nil-clean ring via involutions. We show that a ring [Formula: see text] is strongly 2-nil-clean if and only if every element in [Formula: see text] is the sum of an idempotent, an involution and a nilpotent that commute.


1975 ◽  
Vol 34 (2) ◽  
pp. 300-308 ◽  
Author(s):  
J.W Brewer ◽  
D.L Costa ◽  
E.L Lady

2014 ◽  
Vol 14 (01) ◽  
pp. 1550004 ◽  
Author(s):  
Yuanlin Li ◽  
M. M. Parmenter ◽  
Pingzhi Yuan

A ring with involution * is called *-clean if each of its elements is the sum of a unit and a projection. Clearly a *-clean ring is clean. Vaš asked whether there exists a clean ring with involution * that is not *-clean. In a recent paper, Gao, Chen and the first author investigated when a group ring RG with classical involution * is *-clean and obtained necessary and sufficient conditions for RG to be *-clean, where R is a commutative local ring and G is one of C3, C4, S3 and Q8. As a consequence, the authors provided many examples of group rings which are clean, but not *-clean. In this paper, we continue this investigation and we give a complete characterization of when the group algebra 𝔽Cp is *-clean, where 𝔽 is a field and Cp is the cyclic group of prime order p. Our main result is related closely to the irreducible factorization of a pth cyclotomic polynomial over the field 𝔽. Among other results we also obtain a complete characterization of when RCn (3 ≤ n ≤ 6) is *-clean where R is a commutative local ring.


Sign in / Sign up

Export Citation Format

Share Document