exchange ring
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 13 (2) ◽  
pp. 485-500
Author(s):  
A. Harmanci ◽  
Y. Kurtulmaz ◽  
B. Ungor

In this paper, we focus on the duo ring property via quasinilpotent elements, which gives a new kind of generalizations of commutativity. We call this kind of rings qnil-duo. Firstly, some properties of quasinilpotents in a ring are provided. Then the set of quasinilpotents is applied to the duo property of rings, in this perspective, we introduce and study right (resp., left) qnil-duo rings. We show that this concept is not left-right symmetric. Among others, it is proved that if the Hurwitz series ring $H(R; \alpha)$ is right qnil-duo, then $R$ is right qnil-duo. Every right qnil-duo ring is abelian. A right qnil-duo exchange ring has stable range 1.



2018 ◽  
Vol 62 (3) ◽  
pp. 603-605
Author(s):  
W. K. Nicholson

AbstractA theorem of Burgess and Stephenson asserts that in an exchange ring with central idempotents, every maximal left ideal is also a right ideal. The proof uses sheaf-theoretic techniques. In this paper, we give a short elementary proof of this important theorem.



2015 ◽  
Vol 14 (07) ◽  
pp. 1550101
Author(s):  
Alin Stancu

In this paper, we discuss several constructions that lead to new examples of nil-clean, clean and exchange rings. Extensions by ideals contained in the Jacobson radical is the common theme of these constructions. A characterization of the idempotents in the algebra defined by a 2-cocycle is given and used to prove some of the algebra's properties (the infinitesimal deformation case). From infinitesimal deformations, we go to full deformations and prove that any formal deformation of a clean (exchange) ring is itself clean (exchange). Examples of nil-clean, clean and exchange rings, arising from poset algebras are also discussed.





2013 ◽  
Vol 96 (2) ◽  
pp. 258-274
Author(s):  
V. A. HIREMATH ◽  
SHARAD HEGDE

AbstractIn this article, we introduce the notion of the uniquely $I$-clean ring and show that, if $R$ is a ring and $I$ is an ideal of $R$ then $R$ is uniquely $I$-clean if and only if ($R/ I$ is Boolean and idempotents lift uniquely modulo $I$) if and only if (for each $a\in R$ there exists a central idempotent $e\in R$ such that $e- a\in I$ and $I$ is idempotent-free). We examine when ideal extension is uniquely clean relative to an ideal. Also we obtain conditions on a ring $R$ and an ideal $I$ of $R$ under which uniquely $I$-clean rings coincide with uniquely clean rings. Further we prove that a ring $R$ is uniquely nil-clean if and only if ($N(R)$ is an ideal of $R$ and $R$ is uniquely $N(R)$-clean) if and only if $R$ is both uniquely clean and nil-clean if and only if ($R$ is an abelian exchange ring with $J(R)$ nil and every quasiregular element is uniquely clean). We also show that $R$ is a uniquely clean ring such that every prime ideal of $R$ is maximal if and only if $R$ is uniquely nil-clean ring and $N(R)= {\mathrm{Nil} }_{\ast } (R)$.



2013 ◽  
Vol 89 (2) ◽  
pp. 271-278 ◽  
Author(s):  
SAMUEL J. DITTMER ◽  
DINESH KHURANA ◽  
PACE P. NIELSEN

AbstractIn 1977 Hartwig and Luh asked whether an element $a$ in a Dedekind-finite ring $R$ satisfying $aR= {a}^{2} R$ also satisfies $Ra= R{a}^{2} $. In this paper, we answer this question in the negative. We also prove that if $a$ is an element of a Dedekind-finite exchange ring $R$ and $aR= {a}^{2} R$, then $Ra= R{a}^{2} $. This gives an easier proof of Dischinger’s theorem that left strongly $\pi $-regular rings are right strongly $\pi $-regular, when it is already known that $R$ is an exchange ring.





2012 ◽  
Vol 12 (02) ◽  
pp. 1250162
Author(s):  
ENGİN BÜYÜKAŞIK ◽  
SAAD H. MOHAMED ◽  
HATİCE MUTLU

A necessary and sufficient condition is obtained for a right pseudo semisimple ring to be left pseudo semisimple. It is proved that a right pseudo semisimple ring is an internal exchange ring. It is also proved that a right and left pseudo semisimple ring is an SSP ring.



2012 ◽  
Vol 187 (2) ◽  
pp. 153-156 ◽  
Author(s):  
B. V. Zabavsky ◽  
S. I. Bilavska
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document