Family of quotients of some special rings

2018 ◽  
Vol 17 (12) ◽  
pp. 1850233 ◽  
Author(s):  
Maryam Salimi

Let [Formula: see text] be a commutative Noetherian ring and let [Formula: see text] be a proper ideal of [Formula: see text]. We study some properties of a family of rings [Formula: see text] that are obtained as quotients of the Rees algebra associated with the ring [Formula: see text] and the ideal [Formula: see text]. We deal with the strongly cotorsion property of local cohomology modules of [Formula: see text], when [Formula: see text] is a local ring. Also, we investigate generically Cohen–Macaulay, generically Gorenstein, and generically quasi-Gorenstein properties of [Formula: see text]. Finally, we show that [Formula: see text] is approximately Cohen–Macaulay if and only if [Formula: see text] is approximately Cohen–Macaulay, provided some special conditions.

2015 ◽  
Vol 15 (01) ◽  
pp. 1650019 ◽  
Author(s):  
Tsutomu Nakamura

Let R be a commutative Noetherian ring, 𝔞 an ideal of R and M, N two finitely generated R-modules. Let t be a positive integer or ∞. We denote by Ωt the set of ideals 𝔠 such that [Formula: see text] for all i < t. First, we show that there exists the ideal 𝔟t which is the largest in Ωt and [Formula: see text]. Next, we prove that if 𝔡 is an ideal such that 𝔞 ⊆ 𝔡 ⊆ 𝔟t, then [Formula: see text] for all i < t.


2021 ◽  
Vol 73 (2) ◽  
pp. 268-274
Author(s):  
J. Azami ◽  
M. Hasanzad

UDC 512.5 Let be a complete Noetherian local ring and let be a generalized Cohen-Macaulay -module of dimension We show thatwhere and is the ideal transform functor. Also, assuming that is a proper ideal of a local ring , we obtain some results on the finiteness of Bass numbers, cofinitness, and cominimaxness of local cohomology modules with respect to


2003 ◽  
Vol 92 (2) ◽  
pp. 161 ◽  
Author(s):  
Peter Schenzel

As a certain generalization of regular sequences there is an investigation of weakly proregular sequences. Let $M$ denote an arbitrary $R$-module. As the main result it is shown that a system of elements $\underline x$ with bounded torsion is a weakly proregular sequence if and only if the cohomology of the Čech complex $\check C_{\underline x} \otimes M$ is naturally isomorphic to the local cohomology modules $H_{\mathfrak a}^i(M)$ and if and only if the homology of the co-Čech complex $\mathrm{RHom} (\check C_{\underline x}, M)$ is naturally isomorphic to $\mathrm{L}_i \Lambda^{\mathfrak a}(M),$ the left derived functors of the $\mathfrak a$-adic completion, where $\mathfrak a$ denotes the ideal generated by the elements $\underline x$. This extends results known in the case of $R$ a Noetherian ring, where any system of elements forms a weakly proregular sequence of bounded torsion. Moreover, these statements correct results previously known in the literature for proregular sequences.


2014 ◽  
Vol 21 (03) ◽  
pp. 517-520 ◽  
Author(s):  
Hero Saremi ◽  
Amir Mafi

Let R be a commutative Noetherian ring, 𝔞 an ideal of R, and M a non-zero finitely generated R-module. Let t be a non-negative integer. In this paper, it is shown that [Formula: see text] for all i < t if and only if there exists an ideal 𝔟 of R such that dim R/𝔟 ≤ 1 and [Formula: see text] for all i < t. Moreover, we prove that [Formula: see text] for all i.


2019 ◽  
Vol 18 (12) ◽  
pp. 1950236
Author(s):  
Takeshi Yoshizawa

Faltings presented the local-global principle for the finiteness dimension of local cohomology modules. This paper deals with the local-global principle for an extension subcategory over a commutative Noetherian ring. We prove that finitely generated modules satisfy the local-global principles for certain extension subcategories. Additionally, we provide a generalization of Faltings’ local-global principle, which also includes the local-global principles for the Artinianness and Minimaxness of local cohomology modules.


2008 ◽  
Vol 15 (02) ◽  
pp. 303-308 ◽  
Author(s):  
Jafar Amjadi ◽  
Reza Naghipour

The study of the cohomological dimension of algebraic varieties has produced some interesting results and problems in local algebra. Let 𝔞 be an ideal of a commutative Noetherian ring R. For finitely generated R-modules M and N, the concept of cohomological dimension cd 𝔞(M, N) of M and N with respect to 𝔞 is introduced. If 0 → N' → N → N'' → 0 is an exact sequence of finitely generated R-modules, then it is shown that cd 𝔞(M, N) = max { cd 𝔞(M, N'), cd 𝔞(M, N'')} whenever proj dim M < ∞. Also, if L is a finitely generated R-module with Supp (N/Γ𝔞(N)) ⊆ Supp (L/Γ𝔞(L)), then it is proved that cd 𝔞(M, N) ≤ max { cd 𝔞(M,L), proj dim M}. Finally, as a consequence, a result of Brodmann is improved.


2015 ◽  
Vol 22 (spec01) ◽  
pp. 935-946 ◽  
Author(s):  
Majid Rahro Zargar ◽  
Hossein Zakeri

Let (R, 𝔪) be a commutative Noetherian local ring and M an R-module which is relative Cohen-Macaulay with respect to a proper ideal 𝔞 of R, and set n := ht M𝔞. We prove that injdim M < ∞ if and only if [Formula: see text] and that [Formula: see text]. We also prove that if R has a dualizing complex and Gid RM < ∞, then [Formula: see text]. Moreover if R and M are Cohen-Macaulay, then Gid RM < ∞ whenever [Formula: see text]. Next, for a finitely generated R-module M of dimension d, it is proved that if [Formula: see text] is Cohen-Macaulay and [Formula: see text], then [Formula: see text]. The above results have consequences which improve some known results and provide characterizations of Gorenstein rings.


2010 ◽  
Vol 53 (4) ◽  
pp. 667-673 ◽  
Author(s):  
Kazem Khashyarmanesh

AbstractLet R be a commutative Noetherian ring and a a proper ideal of R. We show that if n := gradeRa, then . We also prove that, for a nonnegative integer n such that = 0 for every i ≠ n, if for all i > 0 and z ∈ a, then is a homomorphic image of R, where Rz is the ring of fractions of R with respect to a multiplicatively closed subset ﹛z j | j ⩾ 0﹜ of R. Moreover, if HomR(Rz , R) = 0 for all z ∈ a, then is an isomorphism, where is the canonical ring homomorphism R → .


Author(s):  
Kamal Bahmanpour

Let [Formula: see text] be a commutative Noetherian complete local ring and [Formula: see text] be a proper ideal of [Formula: see text]. Suppose that [Formula: see text] is a nonzero [Formula: see text]-cofinite [Formula: see text]-module of Krull dimension [Formula: see text]. In this paper, it shown that [Formula: see text] As an application of this result, it is shown that [Formula: see text], for each [Formula: see text] Also it shown that for each [Formula: see text] the submodule [Formula: see text] and [Formula: see text] of [Formula: see text] is [Formula: see text]-cofinite, [Formula: see text] and [Formula: see text] whenever the category of all [Formula: see text]-cofinite [Formula: see text]-modules is an Abelian subcategory of the category of all [Formula: see text]-modules. Also some applications of these results will be included.


2018 ◽  
Vol 17 (02) ◽  
pp. 1850020 ◽  
Author(s):  
Moharram Aghapournahr

Let [Formula: see text] be a commutative Noetherian ring, [Formula: see text] and [Formula: see text] be two ideals of [Formula: see text] and [Formula: see text] be an [Formula: see text]-module (not necessary [Formula: see text]-torsion). In this paper among other things, it is shown that if dim [Formula: see text], then the [Formula: see text]-module [Formula: see text] is finitely generated, for all [Formula: see text], if and only if the [Formula: see text]-module [Formula: see text] is finitely generated, for [Formula: see text]. As a consequence, we prove that if [Formula: see text] is finitely generated and [Formula: see text] such that the [Formula: see text]-module [Formula: see text] is [Formula: see text] (or weakly Laskerian) for all [Formula: see text], then [Formula: see text] is [Formula: see text]-cofinite for all [Formula: see text] and for any [Formula: see text] (or minimax) submodule [Formula: see text] of [Formula: see text], the [Formula: see text]-modules [Formula: see text] and [Formula: see text] are finitely generated. Also it is shown that if dim [Formula: see text] (e.g. dim [Formula: see text]) for all [Formula: see text], then the local cohomology module [Formula: see text] is [Formula: see text]-cofinite for all [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document