injective modules
Recently Published Documents


TOTAL DOCUMENTS

493
(FIVE YEARS 63)

H-INDEX

24
(FIVE YEARS 2)

Author(s):  
Yılmaz Durğun

The subjectivity domain of a module allows us to evaluate how close (or far) a module is from being injective. In this paper, we consider three families of rings characterized by their RD-injective left [Formula: see text]-modules via the subinjective domain: those whose noninjective RD-injective left [Formula: see text]-modules are subinjective relatively only to divisible modules, those whose noninjective RD-injective left [Formula: see text]-modules are subinjective relatively only to fp-injective modules and those whose noninjective RD-injective left [Formula: see text]-modules are subinjective relatively only to injective modules.


Author(s):  
Charley Cummings

AbstractWe consider the smallest triangulated subcategory of the unbounded derived module category of a ring that contains the injective modules and is closed under set indexed coproducts. If this subcategory is the entire derived category, then we say that injectives generate for the ring. In particular, we ask whether, if injectives generate for a collection of rings, do injectives generate for related ring constructions, and vice versa. We provide sufficient conditions for this statement to hold for various constructions including recollements, ring extensions and module category equivalences.


Author(s):  
Wenjing Chen ◽  
Zhongkui Liu

In this paper, we construct some model structures corresponding Gorenstein [Formula: see text]-modules and relative Gorenstein flat modules associated to duality pairs, Frobenius pairs and cotorsion pairs. By investigating homological properties of Gorenstein [Formula: see text]-modules and some known complete hereditary cotorsion pairs, we describe several types of complexes and obtain some characterizations of Iwanaga–Gorenstein rings. Based on some facts given in this paper, we find new duality pairs and show that [Formula: see text] is covering as well as enveloping and [Formula: see text] is preenveloping under certain conditions, where [Formula: see text] denotes the class of Gorenstein [Formula: see text]-injective modules and [Formula: see text] denotes the class of Gorenstein [Formula: see text]-flat modules. We give some recollements via projective cotorsion pair [Formula: see text] cogenerated by a set, where [Formula: see text] denotes the class of Gorenstein [Formula: see text]-projective modules. Also, many recollements are immediately displayed through setting specific complete duality pairs.


Author(s):  
Jawad Abuhlail ◽  
Rangga Ganzar Noegraha

Injective modules play an important role in characterizing different classes of rings (e.g. Noetherian rings, semisimple rings). Some semirings have no nonzero injective semimodules (e.g. the semiring of non-negative integers). In this paper, we study some of the basic properties of the so-called [Formula: see text]-injective semimodules introduced by the first author using a new notion of exact sequences of semimodules. We clarify the relationships between the injective semimodules, the [Formula: see text]-injective semimodule, and the [Formula: see text]-injective semimodules through several implications, examples and counter examples. Moreover, we show that every semimodule over an arbitrary semiring can be embedded in a [Formula: see text]-[Formula: see text]-injective semimodule.


Author(s):  
Bülent Saraç

Two obvious classes of quasi-injective modules are those of semisimples and injectives. In this paper, we study rings with no quasi-injective modules other than semisimples and injectives. We prove that such rings fall into three classes of rings, namely, (i) QI-rings, (ii) rings with no middle class, or (iii) rings that decompose into a direct product of a semisimple Artinian ring and a strongly prime ring. Thus, we restrict our attention to only strongly prime rings and consider hereditary Noetherian prime rings to shed some light on this mysterious case. In particular, we prove that among these rings, QIS-rings which are not of type (i) or (ii) above are precisely those hereditary Noetherian prime rings which are idealizer rings from non-simple QI-overrings.


Author(s):  
A. N. Abyzov ◽  
A. A. Tuganbaev ◽  
D. T. Tapkin ◽  
Quynh Truong Cong

Author(s):  
Nil Orhan Ertaş ◽  
Rachid Tribak

We prove that a ring [Formula: see text] has a module [Formula: see text] whose domain of projectivity consists of only some injective modules if and only if [Formula: see text] is a right noetherian right [Formula: see text]-ring. Also, we consider modules which are projective relative only to a subclass of max modules. Such modules are called max-poor modules. In a recent paper Holston et al. showed that every ring has a p-poor module (that is a module whose projectivity domain consists precisely of the semisimple modules). So every ring has a max-poor module. The structure of all max-poor abelian groups is completely determined. Examples of rings having a max-poor module which is neither projective nor p-poor are provided. We prove that the class of max-poor [Formula: see text]-modules is closed under direct summands if and only if [Formula: see text] is a right Bass ring. A ring [Formula: see text] is said to have no right max-p-middle class if every right [Formula: see text]-module is either projective or max-poor. It is shown that if a commutative noetherian ring [Formula: see text] has no right max-p-middle class, then [Formula: see text] is the ring direct sum of a semisimple ring [Formula: see text] and a ring [Formula: see text] which is either zero or an artinian ring or a one-dimensional local noetherian integral domain such that the quotient field [Formula: see text] of [Formula: see text] has a proper [Formula: see text]-submodule which is not complete in its [Formula: see text]-topology. Then we show that a commutative noetherian hereditary ring [Formula: see text] has no right max-p-middle class if and only if [Formula: see text] is a semisimple ring.


Author(s):  
Avanish Kumar Chaturvedi ◽  
Sandeep Kumar

For any two right [Formula: see text]-modules [Formula: see text] and [Formula: see text], [Formula: see text] is said to be a ps-[Formula: see text]-injective module if, any monomorphism [Formula: see text] can be extended to [Formula: see text]. Also, [Formula: see text] is called psq-injective if [Formula: see text] is a ps-[Formula: see text]-injective module. We discuss some properties and characterizations in terms of psq-injective modules.


Author(s):  
Samira Hashemi ◽  
Feysal Hassani ◽  
Rasul Rasuli

In this paper, we introduce and clarify a new presentation between the n-exact sequence and the n-injective module and n-projective module. Also, we obtain some new results about them.


Sign in / Sign up

Export Citation Format

Share Document