commutative case
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
pp. 1-21
Author(s):  
JOHN DUNCAN ◽  
COLIN M. McGREGOR

Abstract. We continue our investigation of the real space H of Hermitian matrices in $${M_n}(\mathbb{C})$$ with respect to norms on $${\mathbb{C}^n}$$ . We complete the commutative case by showing that any proper real subspace of the real diagonal matrices on $${\mathbb{C}^n}$$ can appear as H. For the non-commutative case, we give a complete solution when n=3 and we provide various illustrative examples for n ≥ 4. We end with a short list of problems.


Author(s):  
ADAM CHAPMAN ◽  
SOLOMON VISHKAUTSAN

Abstract We study the discrete dynamics of standard (or left) polynomials $f(x)$ over division rings D. We define their fixed points to be the points $\lambda \in D$ for which $f^{\circ n}(\lambda )=\lambda $ for any $n \in \mathbb {N}$ , where $f^{\circ n}(x)$ is defined recursively by $f^{\circ n}(x)=f(f^{\circ (n-1)}(x))$ and $f^{\circ 1}(x)=f(x)$ . Periodic points are similarly defined. We prove that $\lambda $ is a fixed point of $f(x)$ if and only if $f(\lambda )=\lambda $ , which enables the use of known results from the theory of polynomial equations, to conclude that any polynomial of degree $m \geq 2$ has at most m conjugacy classes of fixed points. We also show that in general, periodic points do not behave as in the commutative case. We provide a sufficient condition for periodic points to behave as expected.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1513
Author(s):  
Xiaohong Zhang ◽  
Xiangyu Ma ◽  
Xuejiao Wang

The concept of basic implication algebra (BI-algebra) has been proposed to describe general non-classical implicative logics (such as associative or non-associative fuzzy logic, commutative or non-commutative fuzzy logic, quantum logic). However, this algebra structure does not have enough characteristics to describe residual implications in depth, so we propose a new concept of strong BI-algebra, which is exactly the algebraic abstraction of fuzzy implication with pseudo-exchange principle (PEP). Furthermore, in order to describe the characteristics of the algebraic structure corresponding to the non-commutative fuzzy logics, we extend strong BI-algebra to the non-commutative case, and propose the concept of pseudo-strong BI (SBI)-algebra, which is the common extension of quantum B-algebras, pseudo-BCK/BCI-algebras and other algebraic structures. We establish the filter theory and quotient structure of pseudo-SBI- algebras. Moreover, based on prequantales, semi-uninorms, t-norms and their residual implications, we introduce the concept of residual pseudo-SBI-algebra, which is a common extension of (non-commutative) residual lattices, non-associative residual lattices, and also a special kind of residual partially-ordered groupoids. Finally, we investigate the filters and quotient algebraic structures of residuated pseudo-SBI-algebras, and obtain a unity frame of filter theory for various algebraic systems.


Author(s):  
Dimitrinka Vladeva

It is well known that if [Formula: see text] is a derivation in semiring [Formula: see text], then in the semiring [Formula: see text] of [Formula: see text] matrices over [Formula: see text], the map [Formula: see text] such that [Formula: see text] for any matrix [Formula: see text] is a derivation. These derivations are used in matrix calculus, differential equations, statistics, physics and engineering and are called hereditary derivations. On the other hand (in sense of [Basic Algebra II (W. H. Freeman & Company, 1989)]) [Formula: see text]-derivation in matrix semiring [Formula: see text] is a [Formula: see text]-linear map [Formula: see text] such that [Formula: see text], where [Formula: see text]. We prove that if [Formula: see text] is a commutative additively idempotent semiring any [Formula: see text]-derivation is a hereditary derivation. Moreover, for an arbitrary derivation [Formula: see text] the derivation [Formula: see text] in [Formula: see text] is of a special type, called inner derivation (in additively, idempotent semiring). In the last section of the paper for a noncommutative semiring [Formula: see text] a concept of left (right) Ore elements in [Formula: see text] is introduced. Then we extend the center [Formula: see text] to the semiring LO[Formula: see text] of left Ore elements or to the semiring RO[Formula: see text] of right Ore elements in [Formula: see text]. We construct left (right) derivations in these semirings and generalize the result from the commutative case.


Author(s):  
M. M. Vas’kovskii

In this paper we consider mixed-type stochastic differential equations driven by standard and fractional Brownian motions with Hurst indices greater than 1/3. There are proved theorems on the existence, uniqueness, and continuous dependence of solutions on the initial data. We provide an analog of the Ito formula to change variables. Asymptotic expansions of functionals on the solutions of mixed-type stochastic differential equations for small times are obtained. We receive analogs of the Kolmogorov equations for mathematical expectations and probability densities in the commutative case. Finally, we consider an application of mixed-type stochastic differential equations to solving the problem of macroeconomic variables extrapolation in credit risks models.


Author(s):  
A. Naser ◽  
M. H. Fahmy ◽  
A. M. Hassanein

It was shown by Galovich that if [Formula: see text] is a commutative unique factorization ring (UFR) with identity, then [Formula: see text] is a local ring with a nil maximal ideal. In this paper, we generalize Galovich’s results to the non-commutative case.


2019 ◽  
Vol 12 (05) ◽  
pp. 1950079
Author(s):  
Ahmad Al Khalaf ◽  
Iman Taha ◽  
Orest D. Artemovych ◽  
Abdullah Aljouiiee

Earlier D. A. Jordan, C. R. Jordan and D. S. Passman have investigated the properties of Lie rings Der [Formula: see text] of derivations in a commutative differentially prime rings [Formula: see text]. We study Lie rings Der [Formula: see text] in the non-commutative case and prove that if [Formula: see text] is a [Formula: see text]-torsion-free [Formula: see text]-semiprime ring, then [Formula: see text] is a semiprime Lie ring or [Formula: see text] is a commutative ring.


2019 ◽  
Vol 63 (1) ◽  
pp. 67-90 ◽  
Author(s):  
Sergio Estrada ◽  
Marco A. Pérez ◽  
Haiyan Zhu

AbstractBalanced pairs appear naturally in the realm of relative homological algebra associated with the balance of right-derived functors of the Hom functor. Cotorsion triplets are a natural source of such pairs. In this paper, we study the connection between balanced pairs and cotorsion triplets by using recent quiver representation techniques. In doing so, we find a new characterization of abelian categories that have enough projectives and injectives in terms of the existence of complete hereditary cotorsion triplets. We also provide a short proof of the lack of balance for derived functors of Hom computed using flat resolutions, which extends the one given by Enochs in the commutative case.


Sign in / Sign up

Export Citation Format

Share Document