A result on p-hypercyclically embedded subgroups

2019 ◽  
Vol 18 (03) ◽  
pp. 1950043
Author(s):  
Changwen Li ◽  
Jianhong Huang ◽  
Bin Hu

In this paper, a new characterization of [Formula: see text]-hypercyclical embeddability of a normal subgroup of a finite group is obtained based on the notion of [Formula: see text]-subgroups and some known results are generalized and extended.

1968 ◽  
Vol 11 (3) ◽  
pp. 371-374 ◽  
Author(s):  
C.Y. Tang

In [1] Gaschütz has shown that a finite group G splits over an abelian normal subgroup N if its Frattini subgroup ϕ(G) intersects N trivially. When N is a non-abelian nilpotent normal subgroup of G the condition ϕ(G)∩ N = 1 cannot be satisfied: for if N is non-abelian then the commutator subgroup C(N) of N is non-trivial. Now N is nilpotent, whence 1 ≠ C(N)⊂ϕ(N). Since G is a finite group, therefore, by (3, theorem 7.3.17) ϕ⊂ϕ(G). It follows that ϕ(G) ∩ N ≠ 1. Thus the condition ϕ(G) ∩ N = 1 must be modified. In §1 we shall derive some similar type of conditions for G to split over N when the restriction of N being an abelian normal subgroup is removed. In § 2 we shall give a characterization of splitting extensions of N in which every subgroup splits over its intersection with N.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 158
Author(s):  
Li Zhang ◽  
Li-Jun Huo ◽  
Jia-Bao Liu

A subgroup H of a finite group G is said to be weakly H -embedded in G if there exists a normal subgroup T of G such that H G = H T and H ∩ T ∈ H ( G ) , where H G is the normal closure of H in G, and H ( G ) is the set of all H -subgroups of G. In the recent research, Asaad, Ramadan and Heliel gave new characterization of p-nilpotent: Let p be the smallest prime dividing | G | , and P a non-cyclic Sylow p-subgroup of G. Then G is p-nilpotent if and only if there exists a p-power d with 1 < d < | P | such that all subgroups of P of order d and p d are weakly H -embedded in G. As new applications of weakly H -embedded subgroups, in this paper, (1) we generalize this result for general prime p and get a new criterion for p-supersolubility; (2) adding the condition “ N G ( P ) is p-nilpotent”, here N G ( P ) = { g ∈ G | P g = P } is the normalizer of P in G, we obtain p-nilpotence for general prime p. Moreover, our tool is the weakly H -embedded subgroup. However, instead of the normality of H G = H T , we just need H T is S-quasinormal in G, which means that H T permutes with every Sylow subgroup of G.


2009 ◽  
Vol 74 (4) ◽  
pp. 1429-1435 ◽  
Author(s):  
John S. Wilson

AbstractIt is shown that there is a formula σ(g) in the first-order language of group theory with the following property: for every finite group G, the largest soluble normal subgroup of G consists precisely of the elements g of G such that σ(g) holds.


Author(s):  
SH. RAHIMI ◽  
Z. AKHLAGHI

Abstract Given a finite group G with a normal subgroup N, the simple graph $\Gamma _{\textit {G}}( \textit {N} )$ is a graph whose vertices are of the form $|x^G|$ , where $x\in {N\setminus {Z(G)}}$ and $x^G$ is the G-conjugacy class of N containing the element x. Two vertices $|x^G|$ and $|y^G|$ are adjacent if they are not coprime. We prove that, if $\Gamma _G(N)$ is a connected incomplete regular graph, then $N= P \times {A}$ where P is a p-group, for some prime p, $A\leq {Z(G)}$ and $\textbf {Z}(N)\not = N\cap \textbf {Z}(G)$ .


1969 ◽  
Vol 10 (3-4) ◽  
pp. 359-362
Author(s):  
Nita Bryce

M. Suzuki [3] has proved the following theorem. Let G be a finite group which has an involution t such that C = CG(t) ≅ SL(2, q) and q odd. Then G has an abelian odd order normal subgroup A such that G = CA and C ∩ A = 〈1〉.


1989 ◽  
Vol 12 (2) ◽  
pp. 263-266
Author(s):  
Prabir Bhattacharya ◽  
N. P. Mukherjee

For a finite group G and an arbitrary prime p, letSP(G)denote the intersection of all maximal subgroups M of G such that [G:M] is both composite and not divisible by p; if no such M exists we setSP(G)= G. Some properties of G are considered involvingSP(G). In particular, we obtain a characterization of G when each M in the definition ofSP(G)is nilpotent.


1997 ◽  
Vol 40 (2) ◽  
pp. 243-246
Author(s):  
Yanming Wang

A subgroup H is called c-normal in a group G if there exists a normal subgroup N of G such that HN = G and H∩N ≤ HG, where HG =: Core(H) = ∩g∈GHg is the maximal normal subgroup of G which is contained in H. We use a result on primitive groups and the c-normality of maximal subgroups of a finite group G to obtain results about the influence of the set of maximal subgroups on the structure of G.


1988 ◽  
Vol 31 (3) ◽  
pp. 469-474
Author(s):  
Robert W. van der Waall

Let K be a field, G a finite group, V a (right) KG-module. If H is a subgroup of G, then, restricting the action of G on V to H, V is also a KH-module. Notation: VH.Suppose N is a normal subgroup of G. The KN-module VN is not irreducible in general, even when V is irreducible as KG-module. A part of the well-known theorem of A. H. Clifford [1, V.17.3] yields the following.


Author(s):  
Younes Rezayi ◽  
Ali Iranmanesh

‎Let G be a finite group and cd(G) be the set of irreducible character degree of G‎. ‎In this paper we prove that if  p is a prime number‎, ‎then the simple group PSL(4,p) is uniquely determined by its order and some its character degrees‎. 


2008 ◽  
Vol 01 (03) ◽  
pp. 369-382
Author(s):  
Nataliya V. Hutsko ◽  
Vladimir O. Lukyanenko ◽  
Alexander N. Skiba

Let G be a finite group and H a subgroup of G. Then H is said to be S-quasinormal in G if HP = PH for all Sylow subgroups P of G. Let HsG be the subgroup of H generated by all those subgroups of H which are S-quasinormal in G. Then we say that H is nearly S-quasinormal in G if G has an S-quasinormal subgroup T such that HT = G and T ∩ H ≤ HsG. Our main result here is the following theorem. Let [Formula: see text] be a saturated formation containing all supersoluble groups and G a group with a normal subgroup E such that [Formula: see text]. Suppose that every non-cyclic Sylow subgroup P of E has a subgroup D such that 1 < |D| < |P| and all subgroups H of P with order |H| = |D| and every cyclic subgroup of P with order 4 (if |D| = 2 and P is a non-abelian 2-group) having no supersoluble supplement in G are nearly S-quasinormal in G. Then [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document