scholarly journals Recognition of symplectic and orthogonal groups of small dimensions by spectrum

2019 ◽  
Vol 18 (12) ◽  
pp. 1950230
Author(s):  
Mariya A. Grechkoseeva ◽  
Andrey V. Vasil’ev ◽  
Mariya A. Zvezdina

We refer to the set of the orders of elements of a finite group as its spectrum and say that finite groups are isospectral if their spectra coincide. In this paper, we determine all finite groups isospectral to the simple groups [Formula: see text], [Formula: see text], and [Formula: see text]. In particular, we prove that with just four exceptions, every such finite group is an extension of the initial simple group by a (possibly trivial) field automorphism.

2021 ◽  
Vol 13 (3) ◽  
pp. 59
Author(s):  
Nader Taffach

In this paper, we study the problem of how a finite group can be generated by some subgroups. In order to the finite simple groups, we show that any finite non-abelian simple group can be generated by two Sylow p1 - and p_2 -subgroups, where p_1  and p_2  are two different primes. We also show that for a given different prime numbers p  and q , any finite group can be generated by a Sylow p -subgroup and a q -subgroup.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650054
Author(s):  
E. N. Myslovets

Let [Formula: see text] be a class of finite simple groups. We say that a finite group [Formula: see text] is a [Formula: see text]-group if all composition factors of [Formula: see text] are contained in [Formula: see text]. A group [Formula: see text] is called [Formula: see text]-supersoluble if every chief [Formula: see text]-factor of [Formula: see text] is a simple group. In this paper, properties of mutually permutable products of [Formula: see text]-supersoluble finite groups are studied. Some earlier results on mutually permutable products of [Formula: see text]-supersoluble groups (SC-groups) appear as particular cases.


2021 ◽  
Vol 31 (2) ◽  
pp. 195-211
Author(s):  
X. Y. Chen ◽  
◽  
A. R. Moghaddamfar ◽  
M. Zohourattar ◽  
◽  
...  

In this paper we investigate some properties of the power graph and commuting graph associated with a finite group, using their tree-numbers. Among other things, it is shown that the simple group L2(7) can be characterized through the tree-number of its power graph. Moreover, the classification of groups with power-free decomposition is presented. Finally, we obtain an explicit formula concerning the tree-number of commuting graphs associated with the Suzuki simple groups.


2020 ◽  
Vol 8 ◽  
Author(s):  
ANDREA LUCCHINI ◽  
CLAUDE MARION ◽  
GARETH TRACEY

For a finite group $G$ , let $d(G)$ denote the minimal number of elements required to generate $G$ . In this paper, we prove sharp upper bounds on $d(H)$ whenever $H$ is a maximal subgroup of a finite almost simple group. In particular, we show that $d(H)\leqslant 5$ and that $d(H)\geqslant 4$ if and only if $H$ occurs in a known list. This improves a result of Burness, Liebeck and Shalev. The method involves the theory of crowns in finite groups.


2006 ◽  
Vol 58 (1) ◽  
pp. 23-38 ◽  
Author(s):  
Vahid Dabbaghian-Abdoly

AbstractLet G be a finite group and χ be an irreducible character of G. An efficient and simple method to construct representations of finite groups is applicable whenever G has a subgroup H such that χH has a linear constituent with multiplicity 1. In this paper we show (with a few exceptions) that if G is a simple group or a covering group of a simple group and χ is an irreducible character of G of degree less than 32, then there exists a subgroup H (often a Sylow subgroup) of G such that χH has a linear constituent with multiplicity 1.


2008 ◽  
Vol 18 (05) ◽  
pp. 925-933 ◽  
Author(s):  
M. R. DARAFSHEH

In this paper we will prove that up to isomorphism there are two finite groups with the same spectrum as that of the simple group L7(3). For the group L8(3) we will prove that if G is a finite group with the same spectrum as that of L8(3), then G is isomorphic to the group L8(3).


2008 ◽  
Vol 07 (06) ◽  
pp. 735-748 ◽  
Author(s):  
BEHROOZ KHOSRAVI

Let G be a finite group. The prime graph Γ(G) of G is defined as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p, q are joined by an edge if there is an element in G of order pq. It is proved that if p > 11 and p ≢ 1 (mod 12), then PSL(2,p) is uniquely determined by its prime graph. Also it is proved that if p > 7 is a prime number and Γ(G) = Γ(PSL(2,p2)), then G ≅ PSL(2,p2) or G ≅ PSL(2,p2).2, the non-split extension of PSL(2,p2) by ℤ2. In this paper as the main result we determine finite groups G such that Γ(G) = Γ(PSL(2,q)), where q = pk. As a consequence of our results we prove that if q = pk, k > 1 is odd and p is an odd prime number, then PSL(2,q) is uniquely determined by its prime graph and so these groups are characterizable by their prime graph.


2020 ◽  
Vol 23 (3) ◽  
pp. 447-470
Author(s):  
Nanying Yang ◽  
Mariya A. Grechkoseeva ◽  
Andrey V. Vasil’ev

AbstractWe refer to the set of the orders of elements of a finite group as its spectrum and say that groups are isospectral if their spectra coincide. We prove that, except for one specific case, the solvable radical of a nonsolvable finite group isospectral to a finite simple group is nilpotent.


2019 ◽  
Vol 102 (1) ◽  
pp. 77-90
Author(s):  
PABLO SPIGA

Let $G$ be a finite group with two primitive permutation representations on the sets $\unicode[STIX]{x1D6FA}_{1}$ and $\unicode[STIX]{x1D6FA}_{2}$ and let $\unicode[STIX]{x1D70B}_{1}$ and $\unicode[STIX]{x1D70B}_{2}$ be the corresponding permutation characters. We consider the case in which the set of fixed-point-free elements of $G$ on $\unicode[STIX]{x1D6FA}_{1}$ coincides with the set of fixed-point-free elements of $G$ on $\unicode[STIX]{x1D6FA}_{2}$, that is, for every $g\in G$, $\unicode[STIX]{x1D70B}_{1}(g)=0$ if and only if $\unicode[STIX]{x1D70B}_{2}(g)=0$. We have conjectured in Spiga [‘Permutation characters and fixed-point-free elements in permutation groups’, J. Algebra299(1) (2006), 1–7] that under this hypothesis either $\unicode[STIX]{x1D70B}_{1}=\unicode[STIX]{x1D70B}_{2}$ or one of $\unicode[STIX]{x1D70B}_{1}-\unicode[STIX]{x1D70B}_{2}$ and $\unicode[STIX]{x1D70B}_{2}-\unicode[STIX]{x1D70B}_{1}$ is a genuine character. In this paper we give evidence towards the veracity of this conjecture when the socle of $G$ is a sporadic simple group or an alternating group. In particular, the conjecture is reduced to the case of almost simple groups of Lie type.


Author(s):  
Sajjad M. Robati ◽  
M. R. Darafsheh

Let [Formula: see text] be a finite group. We say that a conjugacy class of [Formula: see text] in [Formula: see text] is vanishing if there exists some irreducible character [Formula: see text] of [Formula: see text] such that [Formula: see text]. In this paper, we show that finite groups with at most six vanishing conjugacy classes are solvable or almost simple groups.


Sign in / Sign up

Export Citation Format

Share Document