Strongly D2 modules and their applications

Author(s):  
Mingzhao Chen ◽  
Hwankoo Kim ◽  
Fanggui Wang

An [Formula: see text]-module [Formula: see text] is called strongly [Formula: see text] if [Formula: see text] is a [Formula: see text] (equivalently, direct projective) module for every positive integer [Formula: see text]. In this paper, we consider the class of quasi-projective [Formula: see text]-modules, the class of strongly [Formula: see text] [Formula: see text]-modules and the class of [Formula: see text]-modules. We first show that these classes are distinct, which gives a negative answer to the question raised by Li–Chen–Kourki. We also give structural characterizations of strongly [Formula: see text] modules for finitely generated modules over a principal ideal domain. In addition, we characterize some rings such as Artinian semisimple rings, hereditary rings, semihereditary rings and perfect rings in terms of strongly [Formula: see text] modules.

1971 ◽  
Vol 5 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Gilbert Baumslag

We establish the result that a finitely generated cyclic extension of a free group is residually finite. This is done, in part, by making use of the fact that a finitely generated module over a principal ideal domain is a direct sum of cyclic modules.


1989 ◽  
Vol 32 (1) ◽  
pp. 114-116 ◽  
Author(s):  
Robert Gilmer ◽  
William Heinzer

AbstractLet D be a PID with infinitely many maximal ideals. J. W. Brewer has asked whether some simple ring extension D[α] of D must have nontrivial Picard group. We show that this question has a negative answer.


2020 ◽  
Vol 87 (3-4) ◽  
pp. 148
Author(s):  
Puja Bharti ◽  
Jagmohan Tanti

In this paper, we investigate the similarity classes of linear transformations on a vector space using structure theorem for finitely generated modules over a principal ideal domain. We also establish formulae to count similarity classes with a given polynomial as a characteristic polynomial and to count total number of classes when the scalar field is finite.


2019 ◽  
Vol 26 (03) ◽  
pp. 401-410
Author(s):  
Heguo Liu ◽  
Xiaoliang Luo ◽  
Xin Qin ◽  
Bomin Zan

Let D be a principal ideal domain (PID) and M be a module over D. We prove the following two dual results: (i) If M is finitely generated and x, y are two elements in M such that [Formula: see text], then there exists an automorphism α of M such that [Formula: see text]. (ii) If M satisfies the minimal condition on submodules and X, Y are two locally cyclic submodules of M such that [Formula: see text] and [Formula: see text], then there exists an automorphism α of M such that [Formula: see text].


2019 ◽  
Vol 18 (05) ◽  
pp. 1950099
Author(s):  
Adson Banda

Let [Formula: see text] be a principal ideal domain (PID) or more generally a Dedekind domain and let [Formula: see text] be a coherent functor from the category of finitely generated [Formula: see text]-modules to itself. We classify the half-exact coherent functors [Formula: see text]. In particular, we show that if [Formula: see text] is a half-exact coherent functor over a Dedekind domain [Formula: see text], then [Formula: see text] is a direct sum of functors of the form [Formula: see text], [Formula: see text] and [Formula: see text], where [Formula: see text] is a finitely generated projective [Formula: see text]-module, [Formula: see text] a nonzero prime ideal in [Formula: see text] and [Formula: see text].


2013 ◽  
Vol 29 (2) ◽  
pp. 267-273
Author(s):  
MIHAIL URSUL ◽  
◽  
MARTIN JURAS ◽  

We prove that every infinite nilpotent ring R admits a ring topology T for which (R, T ) has an open totally bounded countable subring with trivial multiplication. A new example of a compact ring R for which R2 is not closed, is given. We prove that every compact Bezout domain is a principal ideal domain.


1980 ◽  
Vol 32 (1) ◽  
pp. 240-245 ◽  
Author(s):  
Robert C. Thompson

Let R be a principal ideal domain, i.e., a commutative ring without zero divisors in which every ideal is principal. The invariant factors of a matrix A with entries in R are the diagonal elements when A is converted to a diagonal form D = UAV, where U, V have entries in R and are unimodular (invertible over R), and the diagonal entries d1 …, dn of D form a divisibility chain: d1|d2| … |dn. Very little has been proved about how invariant factors may change when matrices are added. This is in contrast to the corresponding question for matrix multiplication, where much information is now available [6].


Sign in / Sign up

Export Citation Format

Share Document