maximal ideals
Recently Published Documents


TOTAL DOCUMENTS

329
(FIVE YEARS 37)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
pp. 189-215
Author(s):  
Eugene Spiegel ◽  
Christopher J. O’Donnell
Keyword(s):  

2021 ◽  
Vol 3 (1) ◽  
pp. 23-28
Author(s):  
Pascal Pankiti ◽  
C Nkuimi-Jugnia

The notion of quantale, which designates a complete lattice equipped with an associative binary multiplication distributing over arbitrary joins, appears in various areasof mathematics-in quantaloid theory, in non classical logic as completion of the Lindebaum algebra, and in different representations of the spectrum of a C∗ algebra asmany-valued and non commutative topologies. To put it briefly, its importance is nolonger to be demonstrated. Quantales are ring-like structures in that they share withrings the common fact that while as rings are semi groups in the tensor category ofabelian groups, so quantales are semi groups in the tensor category of sup-lattices.In 2008 Anderson and Kintzinger [1] investigated the ideals, prime ideals, radical ideals, primary ideals, and maximal of a product ring R × S of two commutativenon non necceray unital rings R and S: Something resembling rings are quantales byanalogy with what is studied in ring, we begin an investigation on ideals of a productof two quantales. In this paper, given two quantales Q1 and Q2; not necessarily withidentity, we investigate the ideals, prime ideals, primary ideals, and maximal ideals ofthe quantale Q1 × Q2


Author(s):  
Nicholas Bruno

The work of Helmer [Divisibility properties of integral functions, Duke Math. J. 6(2) (1940) 345–356] applied algebraic methods to the field of complex analysis when he proved the ring of entire functions on the complex plane is a Bezout domain (i.e. all finitely generated ideals are principal). This inspired the work of Henriksen [On the ideal structure of the ring of entire functions, Pacific J. Math. 2(2) (1952) 179–184. On the prime ideals of the ring of entire functions, Pacific J. Math. 3(4) (1953) 711–720] who proved a correspondence between the maximal ideals within the ring of entire functions and ultrafilters on sets of zeroes as well as a correspondence between the prime ideals and growth rates on the multiplicities of zeroes. We prove analogous results on rings of analytic functions in the non-Archimedean context: all finitely generated ideals in the ring of analytic functions on an annulus of a characteristic zero non-Archimedean field are two-generated but not guaranteed to be principal. We also prove the maximal and prime ideal structure in the non-Archimedean context is similar to that of the ordinary complex numbers; however, the methodology has to be significantly altered to account for the failure of Weierstrass factorization on balls of finite radius in fields which are not spherically complete, which was proven by Lazard [Les zeros d’une function analytique d’une variable sur un corps value complet, Publ. Math. l’IHES 14(1) (1942) 47–75].


Author(s):  
Ayah Almousa ◽  
Gunnar Fløystad ◽  
Henning Lohne
Keyword(s):  

2021 ◽  
pp. 1-13
Author(s):  
Z. Arjmandnezhad ◽  
F. Azarpanah ◽  
A.A. Hesari ◽  
A.R. Salehi
Keyword(s):  

Author(s):  
Gaohua Tang ◽  
Huadong Su ◽  
Pingzhi Yuan

An element [Formula: see text] of a ring [Formula: see text] is called a quasi-idempotent if [Formula: see text] for some central unit [Formula: see text] of [Formula: see text], or equivalently, [Formula: see text], where [Formula: see text] is a central unit and [Formula: see text] is an idempotent of [Formula: see text]. A ring [Formula: see text] is called a quasi-Boolean ring if every element of [Formula: see text] is quasi-idempotent. A ring [Formula: see text] is called (strongly) quasi-clean if each of its elements is a sum of a quasi-idempotent and a unit (that commute). These rings are shown to be a natural generalization of the clean rings and strongly clean rings. An extensive study of (strongly) quasi-clean rings is conducted. The abundant examples of (strongly) quasi-clean rings state that the class of (strongly) quasi-clean rings is very larger than the class of (strongly) clean rings. We prove that an indecomposable commutative semilocal ring is quasi-clean if and only if it is local or [Formula: see text] has no image isomorphic to [Formula: see text]; For an indecomposable commutative semilocal ring [Formula: see text] with at least two maximal ideals, [Formula: see text]([Formula: see text]) is strongly quasi-clean if and only if [Formula: see text] is quasi-clean if and only if [Formula: see text], [Formula: see text] is a maximal ideal of [Formula: see text]. For a prime [Formula: see text] and a positive integer [Formula: see text], [Formula: see text] is strongly quasi-clean if and only if [Formula: see text]. Some open questions are also posed.


2021 ◽  
Vol 28 (02) ◽  
pp. 351-360
Author(s):  
Yu Wang ◽  
Zhihua Wang ◽  
Libin Li

Let [Formula: see text] be a finite-dimensional pointed Hopf algebra of rank one over an algebraically closed field of characteristic zero. In this paper we show that any finite-dimensional indecomposable [Formula: see text]-module is generated by one element. In particular, any indecomposable submodule of [Formula: see text] under the adjoint action is generated by a special element of [Formula: see text]. Using this result, we show that the Hopf algebra [Formula: see text] is a principal ideal ring, i.e., any two-sided ideal of [Formula: see text] is generated by one element. As an application, we give explicitly the generators of ideals, primitive ideals, maximal ideals and completely prime ideals of the Taft algebras.


Author(s):  
DAVID DOLŽAN

Abstract We determine the metric dimension of the annihilating-ideal graph of a local finite commutative principal ring and a finite commutative principal ring with two maximal ideals. We also find bounds for the metric dimension of the annihilating-ideal graph of an arbitrary finite commutative principal ring.


2021 ◽  
Vol 22 (1) ◽  
pp. 47
Author(s):  
Amrita Acharyya ◽  
Sudip Kumar Acharyya ◽  
Sagarmoy Bag ◽  
Joshua Sack

<p>For a completely regular Hausdorff topological space X, let C(X, C) be the ring of complex-valued continuous functions on X, let C ∗ (X, C) be its subring of bounded functions, and let Σ(X, C) denote the collection of all the rings that lie between C ∗ (X, C) and C(X, C). We show that there is a natural correlation between the absolutely convex ideals/ prime ideals/maximal ideals/z-ideals/z ◦ -ideals in the rings P(X, C) in Σ(X, C) and in their real-valued counterparts P(X, C) ∩ C(X). These correlations culminate to the fact that the structure space of any such P(X, C) is βX. For any ideal I in C(X, C), we observe that C ∗ (X, C)+I is a member of Σ(X, C), which is further isomorphic to a ring of the type C(Y, C). Incidentally these are the only C-type intermediate rings in Σ(X, C) if and only if X is pseudocompact. We show that for any maximal ideal M in C(X, C), C(X, C)/M is an algebraically closed field, which is furthermore the algebraic closure of C(X)/M ∩C(X). We give a necessary and sufficient condition for the ideal CP (X, C) of C(X, C), which consists of all those functions whose support lie on an ideal P of closed sets in X, to be a prime ideal, and we examine a few special cases thereafter. At the end of the article, we find estimates for a few standard parameters concerning the zero-divisor graphs of a P(X, C) in Σ(X, C).</p>


Sign in / Sign up

Export Citation Format

Share Document