ANALYSIS OF SURFACE EMG SIGNALS UNDER FATIGUE AND NON-FATIGUE CONDITIONS USING B-DISTRIBUTION BASED QUADRATIC TIME FREQUENCY DISTRIBUTION

2015 ◽  
Vol 15 (02) ◽  
pp. 1540028 ◽  
Author(s):  
P. A. KARTHICK ◽  
G. VENUGOPAL ◽  
S. RAMAKRISHNAN

In this paper, an attempt has been made to analyze surface electromyography (sEMG) signals under non-fatigue and fatigue conditions using time-frequency based features. The sEMG signals are recorded from biceps brachii muscle of 50 healthy volunteers under well-defined protocol. The pre-processed signals are divided into six equal epochs. The first and last segments are considered as non-fatigue and fatigue zones respectively. Further, these signals are subjected to B-distribution based quadratic time-frequency distribution (TFD). Time frequency based features such as instantaneous median frequency (IMDF) and instantaneous mean frequency (IMNF) are extracted. The expression of spectral entropy is modified to obtain instantaneous spectral entropy (ISPEn) from the time-frequency spectrum. The results show that all the extracted features are distinct in both conditions. It is also observed that the values of all features are higher in non-fatigue zone compared to fatigue condition. It appears that this method is useful in analysing various neuromuscular conditions using sEMG signals.

Author(s):  
Lakshmi M Hari ◽  
Gopinath Venugopal ◽  
Swaminathan Ramakrishnan

In this study, the dynamic contractions and the associated fatigue condition in biceps brachii muscle are analysed using Synchrosqueezed Wavelet Transform (SST) and singular value features of surface Electromyography (sEMG) signals. For this, the recorded signals are decomposed into time-frequency matrix using SST. Two analytic functions namely Morlet and Bump wavelets are utilised for the analysis. Singular Value Decomposition method is applied to this time-frequency matrix to derive the features such as Maximum Singular Value (MSV), Singular Value Entropy (SVEn) and Singular Value Energy (SVEr). The results show that both these wavelets are able to characterise nonstationary variations in sEMG signals during dynamic fatiguing contractions. Increase in values of MSV and SVEr with the progression of fatigue denotes the presence of nonstationarity in the sEMG signals. The lower values of SVEn with the progression of fatigue indicate the randomness in the signal. Thus, it appears that the proposed approach could be used to characterise dynamic muscle contractions under varied neuromuscular conditions.


Sign in / Sign up

Export Citation Format

Share Document