spectral entropy
Recently Published Documents


TOTAL DOCUMENTS

330
(FIVE YEARS 92)

H-INDEX

28
(FIVE YEARS 6)

Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Maryam Zolfaghari-Nejad ◽  
Mostafa Charmi ◽  
Hossein Hassanpoor

In this work, we introduce a new non-Shilnikov chaotic system with an infinite number of nonhyperbolic equilibrium points. The proposed system does not have any linear term, and it is worth noting that the new system has one equilibrium point with triple zero eigenvalues at the origin. Also, the novel system has an infinite number of equilibrium points with double zero eigenvalues that are located on the z -axis. Numerical analysis of the system reveals many strong dynamics. The new system exhibits multistability and antimonotonicity. Multistability implies the coexistence of many periodic, limit cycle, and chaotic attractors under different initial values. Also, bifurcation analysis of the system shows interesting phenomena such as periodic window, period-doubling route to chaos, and inverse period-doubling bifurcations. Moreover, the complexity of the system is analyzed by computing spectral entropy. The spectral entropy distribution under different initial values is very scattered and shows that the new system has numerous multiple attractors. Finally, chaos-based encoding/decoding algorithms for secure data transmission are developed by designing a state chain diagram, which indicates the applicability of the new chaotic system.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi-Yun Tsai ◽  
Yi-Chen Pan ◽  
Jui-Chao Kuo

AbstractA raw electron backscatter diffraction (EBSD) signal can be empirically decomposed into a Kikuchi diffraction pattern and a smooth background. For pattern indexing, the latter is generally undesirable but can reveal topographical, compositional, or diffraction contrast. In this study, we proposed a new background correction method using polynomial fitting (PF) algorithm to obtain clear Kikuchi diffraction patterns for some applications in nonconductive materials due to coating problems, at low accelerated voltage and at rough sample surfaces and for the requirement of high pattern quality in HR-EBSD. To evaluate the quality metrics of the Kikuchi patterns, we initially used three indices, namely, pattern quality, Tenengrad variance, and spatial–spectral entropy-based quality to detect the clarity, contrast, and noise of Kikuchi patterns obtained at 5 and 15 kV. Then, we examined the performance of PF method by comparing it with pattern averaging and Fourier transform-based methods. Finally, this PF background correction is demonstrated to extract the background images from the blurred diffraction patterns of EBSD measurements at low kV accelerating voltage and with coating layer, and to provide clear Kikuchi patterns successfully.


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 37
Author(s):  
Marek Berezowski ◽  
Natalia Kozioł ◽  
Marcin Lawnik

Oscillations, including chaotic ones, can spontaneously appear in chemical reactors or lean premixed combustors. Such behavior of the system is undesirable and should be identified at the stage of its modeling. This article analyzes the behavior of reverse-flow tubular chemical reactor with longitudinal dispersion in terms of chaotic oscillations. The purpose of using reverse flow is to increase the conversion degree. For the analysis of the reactor, among others, spectral analysis, entropy, and bifurcation analysis were used. The obtained results show the chaotic behavior of the reactor in a wide range of changes in the parameter’s values.


2021 ◽  
Vol 7 (3) ◽  
pp. 426
Author(s):  
Nuryani Nuryani ◽  
Iftita Ida Sofia ◽  
Mohtar Yunianto

Sistem neuromuscular terdiri dari saraf motorik dan otot rangka yang menghasilkan aktivitas kelistrikan pada otot dan menyebabkan otot dapat berkontraksi dan menghasilkan gerak tubuh. Gangguan neuromuscular dapat terjadi pada sel saraf yang dinamakan Neuropathy dan pada sel otot yang dinamakan Myopathy. Aktivitas kelistrikan pada otot direkam melalui suatu alat yang dinamakan Electromiography (EMG). Pada penelitian ini dilakukan identifikasi sinyal EMG pasien sehat, myopathy dan neuropathy. Neuropathy merupakan gangguan yang disebabkan oleh kerusakan sel saraf. Myopathy merupakan gangguan yang disebabkan oleh kerusakan sel otot. Penanganan dan pengobatan myopathy dan neuropathy berbeda, sehingga diperlukan suatu metode yang dapat mendiagnosis dengan tepat jenis gangguan yang dialami. Analisis karakteristik sinyal EMG dilakukan menggunakan metode dekomposisi Wavelet Discrete Dyadic dan variasi fitur Root Mean Square (RMS), approximate entropy, spectral entropy dan Singular Value Decompotition (SVD) entropy. Sinyal karakteristik yang diperoleh di identifikasi menggunakan metode klasifikasi Adaptive Neuro Fuzzy Inference System (ANFIS). Performa ANFIS dalam mengidentifikasi karakteristik sinyal EMG pada masing-masing koefisien dekomposisi, menghasilkan performa terbaik pada koefisien aproksimasi ke-5 (cA5), dengan akurasi 100%, sensitivitas 100% dan spesivitas 100%.


2021 ◽  
Author(s):  
Yuanyue Li ◽  
Tobias Kind ◽  
Jacob Folz ◽  
Arpana Vaniya ◽  
Sajjan Singh Mehta ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Fengfeng Bie ◽  
Yi Miao ◽  
Fengxia Lyu ◽  
Jian Peng ◽  
Yue Guo

As a key component of a mechanical system, the extraction and accurate identification of rolling bearing fault feature information are of great importance to guarantee the normal operation of the mechanical system. Aiming at that the extraction of rolling bearing fault features and traditional support vector machine parameters affects the overall accuracy of pattern classification, the improved CEEMDAN (complete ensemble empirical mode decomposition with adaptive noise) time-domain energy entropy-based model for fault pattern recognition is proposed. The ICEEMDAN method is developed to decompose the signal to obtain the IMF component series. Then, the particular IMF components are selected according to the trend of correlation coefficient and variance contribution rate; meanwhile, the information entropy (power spectral entropy, singular spectral entropy, and time-domain energy entropy) of the screened IMF components is calculated to construct the feature vector sets, respectively. Finally, the feature vector sets are input into the PSO-SVM (particle swarm optimization-support vector machine) based model for training and pattern recognition. The effectiveness of the proposed method of the improved CEEMDAN time-domain energy entropy and PSO-SVM model is testified through numerical simulation and experiments on rolling bearing datasets. The comparison proceeded with the other mainstream intelligent recognition techniques indicates the superiority of the method with the diagnostic accuracy of 100% as for the final validation.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1369
Author(s):  
Arsham Ghavasieh ◽  
Manlio De De Domenico

Complex biological systems consist of large numbers of interconnected units, characterized by emergent properties such as collective computation. In spite of all the progress in the last decade, we still lack a deep understanding of how these properties arise from the coupling between the structure and dynamics. Here, we introduce the multiscale emergent functional state, which can be represented as a network where links encode the flow exchange between the nodes, calculated using diffusion processes on top of the network. We analyze the emergent functional state to study the distribution of the flow among components of 92 fungal networks, identifying their functional modules at different scales and, more importantly, demonstrating the importance of functional modules for the information content of networks, quantified in terms of network spectral entropy. Our results suggest that the topological complexity of fungal networks guarantees the existence of functional modules at different scales keeping the information entropy, and functional diversity, high.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1341
Author(s):  
Xiefu Zhang ◽  
Zean Tian ◽  
Jian Li ◽  
Xianming Wu ◽  
Zhongwei Cui

This paper reports a hidden chaotic system without equilibrium point. The proposed system is studied by the software of MATLAB R2018 through several numerical methods, including Largest Lyapunov exponent, bifurcation diagram, phase diagram, Poincaré map, time-domain waveform, attractive basin and Spectral Entropy. Seven types of attractors are found through altering the system parameters and some interesting characteristics such as coexistence attractors, controllability of chaotic attractor, hyperchaotic behavior and transition behavior are observed. Particularly, the Spectral Entropy algorithm is used to analyze the system and based on the normalized values of Spectral Entropy, the state of the studied system can be identified. Furthermore, the system has been implemented physically to verify the realizability.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6017
Author(s):  
Martin Glasstetter ◽  
Sebastian Böttcher ◽  
Nicolas Zabler ◽  
Nino Epitashvili ◽  
Matthias Dümpelmann ◽  
...  

Photoplethysmography (PPG) as an additional biosignal for a seizure detector has been underutilized so far, which is possibly due to its susceptibility to motion artifacts. We investigated 62 focal seizures from 28 patients with electrocardiography-based evidence of ictal tachycardia (IT). Seizures were divided into subgroups: those without epileptic movements and those with epileptic movements not affecting and affecting the extremities. PPG-based heart rate (HR) derived from a wrist-worn device was calculated for sections with high signal quality, which were identified using spectral entropy. Overall, IT based on PPG was identified in 37 of 62 (60%) seizures (9/19, 7/8, and 21/35 in the three groups, respectively) and could be found prior to the onset of epileptic movements affecting the extremities in 14/21 seizures. In 30/37 seizures, PPG-based IT was in good temporal agreement (<10 s) with ECG-based IT, with an average delay of 5.0 s relative to EEG onset. In summary, we observed that the identification of IT by means of a wearable PPG sensor is possible not only for non-motor seizures but also in motor seizures, which is due to the early manifestation of IT in a relevant subset of focal seizures. However, both spontaneous and epileptic movements can impair PPG-based seizure detection.


Sign in / Sign up

Export Citation Format

Share Document