On Prime Spectrum of Maximal Subgroups in Finite Groups

2018 ◽  
Vol 25 (04) ◽  
pp. 579-584
Author(s):  
Chi Zhang ◽  
Wenbin Guo ◽  
Natalia V. Maslova ◽  
Danila O. Revin

For a positive integer n, we denote by π(n) the set of all prime divisors of n. For a finite group G, the set [Formula: see text] is called the prime spectrum of G. Let [Formula: see text] mean that M is a maximal subgroup of G. We put [Formula: see text] and [Formula: see text]. In this notice, using well-known number-theoretical results, we present a number of examples to show that both K(G) and k(G) are unbounded in general. This implies that the problem “Are k(G) and K(G) bounded by some constant k?”, raised by Monakhov and Skiba in 2016, is solved in the negative.

1964 ◽  
Vol 16 ◽  
pp. 435-442 ◽  
Author(s):  
Joseph Kohler

In this paper finite groups with the property M, that every maximal subgroup has prime or prime square index, are investigated. A short but ingenious argument was given by P. Hall which showed that such groups are solvable.B. Huppert showed that a finite group with the property M, that every maximal subgroup has prime index, is supersolvable, i.e. the chief factors are of prime order. We prove here, as a corollary of a more precise result, that if G has property M and is of odd order, then the chief factors of G are of prime or prime square order. The even-order case is different. For every odd prime p and positive integer m we shall construct a group of order 2apb with property M which has a chief factor of order larger than m.


1970 ◽  
Vol 3 (2) ◽  
pp. 273-276
Author(s):  
John Randolph

Let G be a finite group with a nilpotent maximal subgroup S and let P denote the 2-Sylow subgroup of S. It is shown that if P ∩ Q is a normal subgroup of P for any 2-Sylow subgroup Q of G, then G is solvable.


2016 ◽  
Vol 15 (03) ◽  
pp. 1650057 ◽  
Author(s):  
Wei Meng ◽  
Jiakuan Lu ◽  
Li Ma ◽  
Wanqing Ma

For a finite group [Formula: see text], the symbol [Formula: see text] denotes the set of the prime divisors of [Formula: see text] denotes the number of conjugacy classes of maximal subgroups of [Formula: see text]. Let [Formula: see text] denote the number of conjugacy classes of non-abelian subgroups of [Formula: see text] and [Formula: see text] denote the number of conjugacy classes of all non-normal non-abelian subgroups of [Formula: see text]. In this paper, we consider the finite groups with [Formula: see text] or [Formula: see text]. We show these groups are solvable.


2020 ◽  
Vol 8 ◽  
Author(s):  
ANDREA LUCCHINI ◽  
CLAUDE MARION ◽  
GARETH TRACEY

For a finite group $G$ , let $d(G)$ denote the minimal number of elements required to generate $G$ . In this paper, we prove sharp upper bounds on $d(H)$ whenever $H$ is a maximal subgroup of a finite almost simple group. In particular, we show that $d(H)\leqslant 5$ and that $d(H)\geqslant 4$ if and only if $H$ occurs in a known list. This improves a result of Burness, Liebeck and Shalev. The method involves the theory of crowns in finite groups.


2019 ◽  
Vol 18 (05) ◽  
pp. 1950087
Author(s):  
Xiaolan Yi ◽  
Shiyang Jiang ◽  
S. F. Kamornikov

The subgroup structure of a finite group, under the assumption that its every non-nilpotent maximal subgroup has prime index, is studied in the paper.


1971 ◽  
Vol 23 (3) ◽  
pp. 550-552
Author(s):  
John W. Randolph

Throughout this paper G will denote a finite group containing a nilpotent maximal subgroup S and P will denote the Sylow 2-subgroup of S. The largest subgroup of S normal in G will be designated by core (S) and the largest solvable normal subgroup of G by rad(G). All other notation is standard.Thompson [6] has shown that if P = 1 then G is solvable. Janko [3] then observed that G is solvable if P is abelian, a condition subsequently weakened by him [4] to the assumption that the class of P is ≦ 2 . Our purpose is to demonstrate the sufficiency of a still weaker assumption about P.


2012 ◽  
Vol 86 (2) ◽  
pp. 291-302
Author(s):  
BARBARA BAUMEISTER ◽  
GIL KAPLAN

Abstractc-Sections of maximal subgroups in a finite group and their relation to solvability have been extensively researched in recent years. A fundamental result due to Wang [‘C-normality of groups and its properties’, J. Algebra 180 (1998), 954–965] is that a finite group is solvable if and only if the c-sections of all its maximal subgroups are trivial. In this paper we prove that if for each maximal subgroup of a finite group G, the corresponding c-section order is smaller than the index of the maximal subgroup, then each composition factor of G is either cyclic or isomorphic to the O’Nan sporadic group (the converse does not hold). Furthermore, by a certain ‘refining’ of the latter theorem we obtain an equivalent condition for solvability. Finally, we provide an existence result for large subgroups in the sense of Lev [‘On large subgroups of finite groups’ J. Algebra 152 (1992), 434–438].


2014 ◽  
Vol 57 (4) ◽  
pp. 884-889 ◽  
Author(s):  
Yong Xu ◽  
Xinjian Zhang

AbstractLet A be a subgroup of a finite group G and ∑ some subgroup series of G. Suppose that for each pair (K,H) such that K is a maximal subgroup of H and Gi-1 ≤ K < H ≤ Gi , for some i, either A ∩ H = A ∩ K or AH = AK. Then A is said to be ∑-embedded in G. And A is said to be m-embedded in G if G has a subnormal subgroup T and a {1 ≤ G}-embedded subgroup C in G such that G = AT and T∩A ≤ C ≤ A. In this article, some sufficient conditions for a finite group G to be p-nilpotent are given whenever all subgroups with order pk of a Sylow p-subgroup of G are m-embedded for a given positive integer k.


2011 ◽  
Vol 18 (04) ◽  
pp. 685-692
Author(s):  
Xuanli He ◽  
Shirong Li ◽  
Xiaochun Liu

Let G be a finite group, p the smallest prime dividing the order of G, and P a Sylow p-subgroup of G with the smallest generator number d. Consider a set [Formula: see text] of maximal subgroups of P such that [Formula: see text]. It is shown that if every member [Formula: see text] of is either S-quasinormally embedded or C-normal in G, then G is p-nilpotent. As its applications, some further results are obtained.


2019 ◽  
Vol 22 (2) ◽  
pp. 297-312 ◽  
Author(s):  
Victor S. Monakhov ◽  
Alexander A. Trofimuk

AbstractLetGbe a finite group. In this paper we obtain some sufficient conditions for the supersolubility ofGwith two supersoluble non-conjugate subgroupsHandKof prime index, not necessarily distinct. It is established that the supersoluble residual of such a group coincides with the nilpotent residual of the derived subgroup. We prove thatGis supersoluble in the following cases: one of the subgroupsHorKis nilpotent; the derived subgroup{G^{\prime}}ofGis nilpotent;{|G:H|=q>r=|G:K|}andHis normal inG. Also the supersolubility ofGwith two non-conjugate maximal subgroupsMandVis obtained in the following cases: all Sylow subgroups ofMand ofVare seminormal inG; all maximal subgroups ofMand ofVare seminormal inG.


Sign in / Sign up

Export Citation Format

Share Document