Ramanujan’s sum in the ring of integers of an algebraic number field

2019 ◽  
Vol 16 (01) ◽  
pp. 65-76
Author(s):  
Yujie Wang ◽  
Chungang Ji

In this paper, we generalize Ramanujan’s sum to the ring of integers of an algebraic number field. We also obtain the orthogonality properties of Ramanujan’s sum in the ring of integers.

1988 ◽  
Vol 111 ◽  
pp. 165-171 ◽  
Author(s):  
Yoshimasa Miyata

Let k be an algebraic number field with the ring of integers ok = o and let G be a cyclic group of order p, an odd prime.


1960 ◽  
Vol 16 ◽  
pp. 83-90 ◽  
Author(s):  
Hideo Yokoi

1. Introduction. It is known that there are only three rationally inequivalent classes of indecomposable integral representations of a cyclic group of prime order l. The representations of these classes are: (I) identical representation,(II) rationally irreducible representation of degree l – 1,(III) indecomposable representation consisting of one identical representation and one rationally irreducible representation of degree l-1 (F. E. Diederichsen [1], I. Reiner [2]).


1996 ◽  
Vol 119 (2) ◽  
pp. 191-200 ◽  
Author(s):  
J. Wójcik

Let K be an algebraic number field. If q is a prime ideal of the ring of integers of K and α is a number of K prime to q then Mq(α) denotes the multiplicative group generated by α modulo q. In the paper [5] there is the remark: ‘We do not know whether for all a, b, c ∈ ℚ with abc ≠ 0, |a| ≠ 1,|b| ≠ 1,|c| ≠ 1 there exist infinitely many primes q with Mq (a) = Mq (b) = Mq (c).’


1999 ◽  
Vol 42 (1) ◽  
pp. 127-141
Author(s):  
Dimitrios Poulakis

Let K be an algebraic number field with ring of integers OK and f(X) ∈ OK[X]. In this paper we establish improved explicit upper bounds for the size of solutions in OK, of diophantine equations Y2 = f(X), where f(X) has at least three roots of odd order, and Ym = f(X), where m is an integer ≥ 3 and f(X) has at least two roots of order prime to m.


2018 ◽  
Vol 17 (05) ◽  
pp. 1850087
Author(s):  
Dmitry Malinin

We consider the arithmetic of integral representations of finite groups over algebraic integers and the generalization of globally irreducible representations introduced by Van Oystaeyen and Zalesskii. For the ring of integers [Formula: see text] of an algebraic number field [Formula: see text] we are interested in the question: what are the conditions for subgroups [Formula: see text] such that [Formula: see text], the [Formula: see text]-span of [Formula: see text], coincides with [Formula: see text], the ring of [Formula: see text]-matrices over [Formula: see text], and what are the minimal realization fields.


2015 ◽  
Vol 36 (5) ◽  
pp. 1354-1378 ◽  
Author(s):  
VITALY BERGELSON ◽  
DONALD ROBERTSON

We generalize the polynomial Szemerédi theorem to intersective polynomials over the ring of integers of an algebraic number field, by which we mean polynomials having a common root modulo every ideal. This leads to the existence of new polynomial configurations in positive-density subsets of $\mathbb{Z}^{m}$ and strengthens and extends recent results of Bergelson, Leibman and Lesigne [Intersective polynomials and the polynomial Szemerédi theorem. Adv. Math.219(1) (2008), 369–388] on polynomials over the integers.


1971 ◽  
Vol 14 (3) ◽  
pp. 405-409 ◽  
Author(s):  
Klaus W. Roggenkamp

Let R be a Dedekind domain with quotient field K and ∧ an R-order in the finite-dimensional separable K-algebra A. If K is an algebraic number field with ring of integers R, then the Jordan-Zassenhaus theorem states that for every left A-module L, the set SL(M)={M: M=∧-lattice, KM≅L} splits into a finite number of nonisomorphic ∧-lattices (cf. Zassenhaus [5]).


Sign in / Sign up

Export Citation Format

Share Document