AN IMPROVED RANDOM WALK SEGMENTATION ON THE LUNG NODULES

2013 ◽  
Vol 06 (06) ◽  
pp. 1350043 ◽  
Author(s):  
LI GUO ◽  
YUNTING ZHANG ◽  
ZEWEI ZHANG ◽  
DONGYUE LI ◽  
YING LI

In this paper, we proposed a semi-automatic technique with a marker indicating the target to locate and segment nodules. For the lung nodule detection, we develop a Gabor texture feature by FCM (Fuzzy C Means) segmentation. Given a marker indicating a rough location of the nodules, a decision process is followed by applying an ellipse fitting algorithm. From the ellipse mask, the foreground and background seeds for the random walk segmentation can be automatically obtained. Finally, the edge of the nodules is obtained by the random walk algorithm. The feasibility and effectiveness of the proposed method are evaluated with the various types of the nodules to identify the edges, so that it can be used to locate the nodule edge and its growth rate.

Author(s):  
Xiaoqi Lu ◽  
Yu Gu ◽  
Lidong Yang ◽  
Baohua Zhang ◽  
Ying Zhao ◽  
...  

Objective: False-positive nodule reduction is a crucial part of a computer-aided detection (CADe) system, which assists radiologists in accurate lung nodule detection. In this research, a novel scheme using multi-level 3D DenseNet framework is proposed to implement false-positive nodule reduction task. Methods: Multi-level 3D DenseNet models were extended to differentiate lung nodules from falsepositive nodules. First, different models were fed with 3D cubes with different sizes for encoding multi-level contextual information to meet the challenges of the large variations of lung nodules. In addition, image rotation and flipping were utilized to upsample positive samples which consisted of a positive sample set. Furthermore, the 3D DenseNets were designed to keep low-level information of nodules, as densely connected structures in DenseNet can reuse features of lung nodules and then boost feature propagation. Finally, the optimal weighted linear combination of all model scores obtained the best classification result in this research. Results: The proposed method was evaluated with LUNA16 dataset which contained 888 thin-slice CT scans. The performance was validated via 10-fold cross-validation. Both the Free-response Receiver Operating Characteristic (FROC) curve and the Competition Performance Metric (CPM) score show that the proposed scheme can achieve a satisfactory detection performance in the falsepositive reduction track of the LUNA16 challenge. Conclusion: The result shows that the proposed scheme can be significant for false-positive nodule reduction task.


Sign in / Sign up

Export Citation Format

Share Document