single shot
Recently Published Documents


TOTAL DOCUMENTS

5538
(FIVE YEARS 2033)

H-INDEX

98
(FIVE YEARS 19)

2022 ◽  
Vol 149 ◽  
pp. 106819
Author(s):  
Huazheng Wu ◽  
Xiangfeng Meng ◽  
Xiulun Yang ◽  
Xianye Li ◽  
Yongkai Yin

2022 ◽  
Vol 122 ◽  
pp. 108258
Author(s):  
Shuyu Miao ◽  
Shanshan Du ◽  
Rui Feng ◽  
Yuejie Zhang ◽  
Huayu Li ◽  
...  
Keyword(s):  

Author(s):  
Chaoqi Yan ◽  
Hong Zhang ◽  
Xuliang Li ◽  
Ding Yuan

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 571
Author(s):  
Xintian Cai ◽  
Zhen Wang ◽  
Chaoyue Ji ◽  
Xuan Wang ◽  
Zhiyin Gan ◽  
...  

Ultrafast detection is an effective method to reveal the transient evolution mechanism of materials. Compared with ultra-fast X-ray diffraction (XRD), the ultra-fast electron beam is increasingly adopted because the larger scattering cross-section is less harmful to the sample. The keV single-shot ultra-fast electron imaging system has been widely used with its compact structure and easy integration. To achieve both the single pulse imaging and the ultra-high temporal resolution, magnetic lenses are typically used for transverse focus to increase signal strength, while radio frequency (RF) cavities are generally utilized for longitudinal compression to improve temporal resolution. However, the detection signal is relatively weak due to the Coulomb force between electrons. Moreover, the effect of RF compression on the transverse focus is usually ignored. We established a particle tracking model to simulate the electron pulse propagation based on the 1-D fluid equation and the 2-D mean-field equation. Under considering the relativity effect and Coulomb force, the impact of RF compression on the transverse focus was studied by solving the fifth-order Rung–Kutta equation. The results show that the RF cavity is not only a key component of longitudinal compression but also affects the transverse focusing. While the effect of transverse focus on longitudinal duration is negligible. By adjusting the position and compression strength of the RF cavity, the beam spot radius can be reduced from 100 μm to 30 μm under the simulation conditions in this paper. When the number of single pulse electrons remains constant, the electrons density incident on the sample could be increased from 3.18×1012 m−2 to 3.54×1013 m−2, which is 11 times the original. The larger the electron density incident on the sample, the greater the signal intensity, which is more conducive to detecting the transient evolution of the material.


2022 ◽  
Vol 19 (2) ◽  
pp. 026001
Author(s):  
N A Smirnov ◽  
S I Kudryashov ◽  
А А Rudenko ◽  
A A Nastulyavichus ◽  
A A Ionin

Abstract A comparison of single-pulse laser ablation of gold target by pulses with a 0.3–10 ps duration and a wavelength of 515 nm in air and in water was performed. The radiation was focused on the sample surface through the objectives with numerical apertures NA = 0.65 and 0.25. The influence of the medium, pulse duration, and spot size on the crater morphology was studied. A significant difference in crater morphology was found for different lenses. The ablation efficiency was studied by measuring the profiles of single-shot pulse craters using scanning force microscopy. The contribution of filamentation to the ablation process is shown quantitatively.


2022 ◽  
Vol 12 ◽  
Author(s):  
Wei Lu ◽  
Rongting Du ◽  
Pengshuai Niu ◽  
Guangnan Xing ◽  
Hui Luo ◽  
...  

Soybean yield is a highly complex trait determined by multiple factors such as genotype, environment, and their interactions. The earlier the prediction during the growing season the better. Accurate soybean yield prediction is important for germplasm innovation and planting environment factor improvement. But until now, soybean yield has been determined by weight measurement manually after soybean plant harvest which is time-consuming, has high cost and low precision. This paper proposed a soybean yield in-field prediction method based on bean pods and leaves image recognition using a deep learning algorithm combined with a generalized regression neural network (GRNN). A faster region-convolutional neural network (Faster R-CNN), feature pyramid network (FPN), single shot multibox detector (SSD), and You Only Look Once (YOLOv3) were employed for bean pods recognition in which recognition precision and speed were 86.2, 89.8, 80.1, 87.4%, and 13 frames per second (FPS), 7 FPS, 24 FPS, and 39 FPS, respectively. Therefore, YOLOv3 was selected considering both recognition precision and speed. For enhancing detection performance, YOLOv3 was improved by changing IoU loss function, using the anchor frame clustering algorithm, and utilizing the partial neural network structure with which recognition precision increased to 90.3%. In order to improve soybean yield prediction precision, leaves were identified and counted, moreover, pods were further classified as single, double, treble, four, and five seeds types by improved YOLOv3 because each type seed weight varies. In addition, soybean seed number prediction models of each soybean planter were built using PLSR, BP, and GRNN with the input of different type pod numbers and leaf numbers with which prediction results were 96.24, 96.97, and 97.5%, respectively. Finally, the soybean yield of each planter was obtained by accumulating the weight of all soybean pod types and the average accuracy was up to 97.43%. The results show that it is feasible to predict the soybean yield of plants in situ with high precision by fusing the number of leaves and different type soybean pods recognized by a deep neural network combined with GRNN which can speed up germplasm innovation and planting environmental factor optimization.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Seung Cheol Lee ◽  
Tae Hyung Kim ◽  
So Ron Choi ◽  
Sang Yoong Park

To enhance the duration of single-shot spinal anesthesia, intrathecal fentanyl and intravenous dexmedetomidine are widely used as adjuvants to local anesthetics. This noninferiority trial evaluated whether hyperbaric ropivacaine alone can produce a noninferior duration of sensory block in comparison to hyperbaric ropivacaine with intrathecal fentanyl in patients under dexmedetomidine sedation. Methods. Fifty patients scheduled for elective lower limb surgery under spinal anesthesia were randomly assigned in a double-blind fashion to receive either hyperbaric ropivacaine 15 mg (Group R) or hyperbaric ropivacaine 15 mg with intrathecal fentanyl 20 μg (Group RF). Intravenous dexmedetomidine (1 μg/kg for 10 min, followed by 0.5 μg/kg/h) was administered in both groups. The primary outcome of this study was the time to two-dermatomal regression of sensory block. The noninferiority margin for the mean difference was −10 min. Characteristics of the block, intraoperative and postoperative side effects, postoperative pain score, and analgesic consumption were assessed as secondary outcomes. Results. There was no difference in the two-dermatomal regressions of sensory block between the two groups (Group R 70.4 ± 10.2 min, Group RF 71.2 ± 12.4 min, p  = 0.804) with a mean difference of 0.8 min (−7.2 to 5.6, 95% confidence interval). Thus, the noninferiority of hyperbaric ropivacaine alone was established. There were no significant differences in the secondary outcomes between the two groups. Conclusions. Under intravenous dexmedetomidine sedation, the duration of spinal anesthesia with hyperbaric ropivacaine alone was noninferior to that of hyperbaric ropivacaine with intrathecal fentanyl. This suggests that addition of intrathecal fentanyl to hyperbaric ropivacaine may not be necessary in patients receiving intravenous dexmedetomidine.


2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Eléonore Roussel ◽  
Christophe Szwaj ◽  
Clément Evain ◽  
Bernd Steffen ◽  
Christopher Gerth ◽  
...  

AbstractRecording electric field evolution in single-shot with THz bandwidth is needed in science including spectroscopy, plasmas, biology, chemistry, Free-Electron Lasers, accelerators, and material inspection. However, the potential application range depends on the possibility to achieve sub-picosecond resolution over a long time window, which is a largely open problem for single-shot techniques. To solve this problem, we present a new conceptual approach for the so-called spectral decoding technique, where a chirped laser pulse interacts with a THz signal in a Pockels crystal, and is analyzed using a grating optical spectrum analyzer. By borrowing mathematical concepts from photonic time stretch theory and radio-frequency communication, we deduce a novel dual-output electro-optic sampling system, for which the input THz signal can be numerically retrieved—with unprecedented resolution—using the so-called phase diversity technique. We show numerically and experimentally that this approach enables the recording of THz waveforms in single-shot over much longer durations and/or higher bandwidth than previous spectral decoding techniques. We present and test the proposed DEOS (Diversity Electro-Optic Sampling) design for recording 1.5 THz bandwidth THz pulses, over 20 ps duration, in single-shot. Then we demonstrate the potential of DEOS in accelerator physics by recording, in two successive shots, the shape of 200 fs RMS relativistic electron bunches at European X-FEL, over 10 ps recording windows. The designs presented here can be used directly for accelerator diagnostics, characterization of THz sources, and single-shot Time-Domain Spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document