otsu thresholding
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 56)

H-INDEX

10
(FIVE YEARS 3)

Author(s):  
Beena Ullala Mata B N ◽  
Rishika I. S ◽  
Nikita Jain ◽  
Kaliprasad C S ◽  
Niranjan K R

Utilizing exclusively picture handling procedures, this examination proposes an original strategy for distinguishing the presence of pneumonia mists in chest X-rays (CXR). Collected the several analogue chest CXRs from patients with normal and Pneumonia-infected lungs. Indigenous algorithms have been developed for cropping and for extraction of the lung region from the images. To detect pneumonia clouds first conducted the preprocessing of the image then used the image segmentation techniques like Otsu thresholding K-means clustering and global thresholding and then contour detection algorithm was applied which helped to detect lung boundary, the area’s ratio is used to classify the normal lung from pneumonia affected lung.


Author(s):  
Bhavay Bajaj

Specification of Bacterial Colonies is needed in many fields, such as clinical analysis, biomedical examination for anticipation of severe illnesses, and the drug industry to avoid tainting items. Existing Bacterial Colony counter frameworks count Bacterial Colony physically, which is a tedious, less effective and dreary cycle. Henceforth, mechanization for calculating bacterial settlement was required. The proposed strategy counts these settlements naturally utilizing picture handling strategies. This strategy will give a more superior level of precision in the counting of bacterial provinces. The proposed method takes a picture of bacterial settlement and converts it into grayscale. Otsu thresholding is applied for the division of the image, further its change into a double shot. From that point onward, morphological activities are used to tidy up the picture by eliminating commotion and superfluous pixels. Distance and watershed changes are applied to double vision to make parts among covered and joint microscopic organisms. Locale properties and marking data of fragmented picture is utilized for counting of the bacterial province.


2021 ◽  
Vol 8 (5) ◽  
pp. 1019
Author(s):  
Arwin Datumaya Wahyudi Sumari ◽  
Putri Indah Mawarni ◽  
Arie Rachmad Syulistyo

<p>Kualitas produk merupakan faktor utama untuk menjamin keberlangsungan satu usaha peternakan. Perusahaan telur puyuh yang memiliki ribuan burung Puyuh seperti CV. NS Quail Farm mampu memproduksi ribuan telur dalam sehari karena seekor burung Puyuh mampu menghasilkan 250-300 butir telur per tahun. Penyeleksian ribuan telur-telur tersebut dilakukan secara tradisional oleh para pekerja peternakan sehingga kualitas telur-telur hasil seleksi bergantung pada perspektif masing-masing pekerja. Guna memperoleh telur hasil seleksi dengan kualitas yang sama, maka dibangun sebuah sistem pencitraan digital untuk pemilihan telur burung Puyuh berdasarkan fitur warna dan tekstur kulit telur menggunakan metode klasifikasi K-<em>Nearest Neighbor</em> (KNN) yang dikombinasikan dengan fusi informasi. 300 data citra telur burung Puyuh diolah menggunakan normalisasi <em>Red, Green, Blue</em> (RGB) dan <em>Otsu thresholding</em> guna memperoleh fitur warna dan fitur tekstur yang kemudian difusikan menjadi fitur terfusi tunggal sebagai masukan pengklasifikasi KNN. Dari hasil-hasil penelitian, disimpulkan bahwa sistem berhasil mengklasifikasikan mutu telur Baik, Sedang, dan Buruk dengan akurasi rata-rata sebesar 77,78%. Disamping itu, klasifikasi dengan fusi informasi mampu mengungguli klasifikasi tanpa fusi informasi sebesar 11,11% pada nilai  yang sama yakni 7 dan fusi informasi juga mampu mempercepat proses klasifikasi sebesar 0,22 detik dibandingkan terhadap klasifikasi tanpa fusi informasi.</p><p><strong><em>Abstract</em></strong></p><p><em>The quality of product us a primary factor to ensure the sustainability of a farm business. A company which has thousands of quail such as CV. NS Quail is capable of producing thousand quail eggs in a day because a quail is able to produce 250-300 eggs per year. The selection of the eggs is carried out traditionally by the farm workers so that the quality of the selected eggs are depended on the perspective of each worker. In order to obtain the same quality of the selected eggs, a digital imaging system for quail egg selection based on color feature and texture feature using K-Nearest Neighbor (KNN) combined with information fusion is developed. 300 image data of quail egg was processed using Red, Green, Blue (RGB) and Otsu thresholding to obtain color feature and texture feature which then were fused to become single fused feature as the input to KNN classifier. From the research results, it is concluded that the system was managed to classify egg quality as good, medium, and bad with an accuracy of 77,78%. In addition, the classification with information fusion was able to outperform the classification without information fusion by 11.11% at the same  value of 7 and information fusion is also able to accelerate classification process by 0.22 seconds compared to that of without information fusion.</em></p>


2021 ◽  
Vol 11 (2) ◽  
pp. 256
Author(s):  
Mohtar Yunianto ◽  
Soeparmi Soeparmi ◽  
Cari Cari ◽  
Fuad Anwar ◽  
Delta Nur Septianingsih ◽  
...  

<p class="AbstractText">Telah berhasil dilakukan klasifikasi kanker paru-paru dari 120 data citra CT Scan. Pada penelitian, proses preposisi dimulai dengan variasi filtering yaitu low pass filter, median filter, dan high pass filter. Segmentasi yang digunakan yaitu Otsu Thresholding yang kemudian teksturnya akan diekstraksi menggunakan fitur Gray Level Co-occurrence Matrix (GLCM) dengan variasi arah sudut. Hasil dari ekstraksi GLCM dijadikan database yang akan menjadi dataset untuk pengklasifikasian citra menggunakan klasifikasi naïve bayes. Hasil dari penelitian dengan 12 buah variasi diperoleh hasil variasi terbaik adalah median filter dengan arah sudut GLCM 0° menunjukkan tingkat akurasi yang paling tinggi sebesar 88,33 %.</p>


2021 ◽  
Vol 2071 (1) ◽  
pp. 012031
Author(s):  
H Yazid ◽  
M H Mat Som ◽  
S N Basah ◽  
S Abdul Rahim ◽  
M F Mahmud ◽  
...  

Abstract Thresholding is one of the powerful methods in segmentation phase. Numerous methods were proposed to segment the foreground from the background but there is limited number of studies that analyse the effect of noise since the present of noise will affect the performance of the thresholding method. In this paper, the main idea is to analyse the effect of noise in Inverse Surface Adaptive Thresholding (ISAT) method. ISAT method is known as an excellent method to segment the image with the present of noise. The result of this analysis can be a guideline to researcher when implementing ISAT method especially in medical image diagnosis. Initially, several images with different noise variations were prepared and underwent ISAT method. In ISAT method, several image processing methods were incorporated namely edge detection, Otsu thresholding and inverse surface construction. The resulting images were evaluated using Misclassification Error (ME) to evaluate the performance of the segmentation result. Based on the obtained results, ISAT performance is consistent although the noise percentage increases from 5% to 25%.


Author(s):  
Yuan Chao ◽  
Chengxia Ma ◽  
Wentao Shan ◽  
Junping Feng ◽  
Zhisheng Zhang

An adaptive directional cubic convolution interpolation method for integrated circuit (IC) chip defect images is proposed in this paper, to meet the challenge of preserving edge and texture information. In the proposed method, Otsu thresholding technique is employed to distinguish strong edge pixels from weak ones and texture regions, and estimate the direction of strong edges, adaptively. Boundary pixels are pre-interpolated using the original bicubic interpolation method to help improve the interpolation accuracy of the interior pixels. The experimental results of both classic test images and IC chip defect images demonstrate that the proposed method outperforms the competing methods with better edge and texture preservation, interpolation quality, more natural visual effect of the interpolated images and reasonable computational time. The proposed method can provide high quality IC chip images for defect detection and has been successfully applied on practical vision inspection for IC chips


Sign in / Sign up

Export Citation Format

Share Document