Lehmer’s problem for arbitrary groups

2020 ◽  
pp. 1-32
Author(s):  
W. Lück

We consider the problem whether for a group [Formula: see text] there exists a constant [Formula: see text] such that for any [Formula: see text]-matrix [Formula: see text] over the integral group ring [Formula: see text] the Fuglede–Kadison determinant of the [Formula: see text]-equivariant bounded operator [Formula: see text] given by right multiplication with [Formula: see text] is either one or greater or equal to [Formula: see text]. If [Formula: see text] is the infinite cyclic group and we consider only [Formula: see text], this is precisely Lehmer’s problem.

1978 ◽  
Vol 19 (2) ◽  
pp. 155-158 ◽  
Author(s):  
Koo-Guan Choo

Let G be a group. We denote the Whitehead group of G by Wh G and the projective class group of the integral group ring ℤ(G) of G by . Let α be an automorphism of G and T an infinite cyclic group. Then we denote by G ×αT the semidirect product of G and T with respect to α. For undefined terminologies used in the paper, we refer to [3] and [7].


1990 ◽  
Vol 42 (3) ◽  
pp. 383-394 ◽  
Author(s):  
Frank Röhl

In [5], Roggenkamp and Scott gave an affirmative answer to the isomorphism problem for integral group rings of finite p-groups G and H, i.e. to the question whether ZG ⥲ ZH implies G ⥲ H (in this case, G is said to be characterized by its integral group ring). Progress on the analogous question with Z replaced by the field Fp of p elements has been very little during the last couple of years; and the most far reaching result in this area in a certain sense - due to Passi and Sehgal, see [8] - may be compared to the integral case, where the group G is of nilpotency class 2.


2000 ◽  
Vol 43 (1) ◽  
pp. 60-62 ◽  
Author(s):  
Daniel R. Farkas ◽  
Peter A. Linnell

AbstractLet G be an arbitrary group and let U be a subgroup of the normalized units in ℤG. We show that if U contains G as a subgroup of finite index, then U = G. This result can be used to give an alternative proof of a recent result of Marciniak and Sehgal on units in the integral group ring of a crystallographic group.


2012 ◽  
Vol 11 (01) ◽  
pp. 1250016 ◽  
Author(s):  
VICTOR BOVDI ◽  
ALEXANDER KONOVALOV

We study the Zassenhaus conjecture for the normalized unit group of the integral group ring of the Mathieu sporadic group M24. As a consequence, for this group we give a positive answer to the question by Kimmerle about prime graphs.


2011 ◽  
Vol 10 (04) ◽  
pp. 711-725 ◽  
Author(s):  
J. Z. GONÇALVES ◽  
D. S. PASSMAN

Let ℤG be the integral group ring of the finite nonabelian group G over the ring of integers ℤ, and let * be an involution of ℤG that extends one of G. If x and y are elements of G, we investigate when pairs of the form (uk, m(x), uk, m(x*)) or (uk, m(x), uk, m(y)), formed respectively by Bass cyclic and *-symmetric Bass cyclic units, generate a free noncyclic subgroup of the unit group of ℤG.


Sign in / Sign up

Export Citation Format

Share Document